ESTUDO DA SELETIVIDADE DO ANZOL NA CAPTURA DO PARGO, LUTJANUS PURPUREUS POEY (PISCES: LUTJANIDAE), NO NORTE E NORDESTE DO BRASIL

Carlos Tassito Corrêa Ivo\(^{(1)}\)
Carlos Artur Sobreira Rocha\(^{(2)}\)

Laboratório de Ciências do Mar
Universidade Federal do Ceará
Fortaleza – Ceará – Brasil

O pargo, *Lutjanus purpureus* Poey, é capturado em toda a costa Norte do Brasil, constituindo-se em um dos principais recursos pesqueiros da região. A captura deste recurso concentrou-se inicialmente em bancos oceânicos localizados na região nordeste, expandindo-se em seguida à plataforma continental dos Estados do Ceará e Maranhão e posteriormente para a costa do Estado do Pará e Território do Amapá (Coelho, 1974; Brasil. SUDEPE/PDP, 1978; Ivo & Hanson, 1982).

A expansão da área de pesca deveu-se, principalmente, à redução da Captura por Unidade de Esforço (CPUE) nas áreas exploradas, como consequência da elevação do esforço de pesca. Ainda com o intuito de aumentar a produção, o pescador reduziu o tamanho do anzol, diminuindo, assim, a característica seletiva do aparelho, passando a capturar indivíduos cada vez menores. Desta forma, anzóis de diferentes tamanhos são utilizados na captura do pargo, sem que se conheça o efeito da seletividade dos mesmos na captura da espécie.

O presente trabalho tem por objetivo analisar a seletividade dos anzóis utilizados na pesca do pargo no Norte do Brasil, considerando a abertura do mesmo como responsável pela seletividade.

MATERIAL E MÉTODO

Os dados analisados no presente trabalho são provenientes de 9 viagens experimentais, com duração média de 15 dias de pesca, realizadas em barco da pesca comercial no período de setembro de 1984 a outubro de 1986. Todos os experimentos estiveram restritos à região Norte do Brasil, entre as latitudes de 0°N a 4°N e longitudes de 46°W a 50°W.

As linhas pargueiras utilizadas durante os experimentos de captura do pargo com vista ao estudo de seletividade apresentavam as mesmas características gerais das linhas usadas na pesca comercial (Fonteles-Filho, 1972), incluindo a marca do anzol — MUSTAD. Entretanto, cada linha pargueira esteve composta de anzóis de diferentes dimensões cujos números variaram entre 618 a 613 (maiores números indicam menores anzóis) com o seguinte plano experimental: cada linha foi montada de forma que houvesse seis repetições do

\(^{(1)}\) Trabalho realizado em decorrência de convênio firmado com a Comissão Interministerial para os Recursos do Mar (CIRM).
\(^{(2)}\) Pesquisador do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e Professor Adjunto do Departamento de Engenharia de Pesca.
conjunto de anzóis testados, obedecendo a ordem crescente do tamanho do anzol em cada conjunto (figura 1-a). Tal disposição teve como objetivo a minimização dos erros amostrais e a eliminação dos efeitos de uma possível estratificação da população do pargo, pois cada número de anzol atuava em 6 diferentes profundidades na coluna d'água. Cada linha pargueira esteve, desta forma, composta de 36 anzóis, 6 de cada número.

Durante as operações de pesca e por ocasião do recolhimento do aparelho, cada indivíduo capturado era etiquetado com um número de ordem que identificava o número do anzol responsável pela sua captura, para posterior determinação do comprimento total (medida da extremidade anterior do focinho até a maior projeção da nadadeira caudal, estando o animal sobre uma superfície plana).

Um total de 1.060 indivíduos foram capturados com a seguinte distribuição por número de anzol: 613 = 111 indivíduos, 614 = 144 indivíduos, 615 = 215 indivíduos, 616 = 205 indivíduos, 617 = 199 indivíduos e 618 = 186 indivíduos (tabela I).

A produção de biomassa de uma população submetida a uma exploração pesqueira é largamente influenciada pelo tamanho médio de captura de seus indivíduos, que em última análise é determinado pela arte de pesca. Sendo o pargo capturado por meio de anzol, espera-se que este aparelho exerça uma seleitividade na captura da espécie, que dependerá essencialmente da forma e tamanho do anzol e também do tamanho da isca. Anzóis em long-line revelam que existe uma relação entre o comprimento do peixe capturado e o tamanho do anzol (Clark et. al., 1958). Desta forma, anzóis grandes capturam um número relativamente menor de indivíduos pequenos, enquanto anzóis pequenos capturam um número relativamente menor de indivíduos grandes.

A sardinha, Sardinella brasiliensis (Steindachner), utilizada durante os experimentos de captura do pargo apresentavam aproximadamente o mesmo tamanho, motivo pelo qual considerou-se apenas a abertura do anzol como responsável pela seletividade. Destaque-se que os anzóis antes de serem utilizados na linha pargueira eram, a exemplo do que ocorre na pesca comer-
cial, alterados na sua forma original de modo a assumirem a forma curva (figura 1-b e 1-c).

Os indivíduos capturados por cada número de anzol foram distribuídos em classes de comprimento total com intervalos de 4 cm (tabela 1). Uma vista geral das distribuições de frequência de comprimento para os diferentes números de anzol (figura 2), sugere que as curvas de seleção são similares a uma distribuição normal. Fato semelhante também foi observado por Holt (1963) para capturas feitas com gill-nets de diferentes tamanhos de malha. Considerando apenas a curva obtida para o anzol de número 618, já que as curvas para os demais números de anzós apresentam a mesma característica, aplicamos o teste do qui-quadrado para verificar estatisticamente a aderência da distribuição a uma curva normal, tendo a mesma se mostrado estatisticamente significante para \(P^2 < 0,01 \).

Tendo em vista que os dados experimentais se comportam segundo curvas normais, empregamos o método de Holt (op. cit.), para o ajuste da curva de seleтивidade dos diferentes números de anzol utilizados nos experimentos de captura do pargo, partindo da função de densidade da curva normal simplificada:

\[
C(\ell) = \exp \left[- \frac{(\ell - \bar{\ell})^2}{2s^2} \right] \tag{1}
\]

com as seguintes suposições: (a) as curvas de seleтивidade são normais e possuem a mesma variância (s²); (b) as modas das curvas de seleтивidade são proporcionais à dimensão da característica seletiva do anzol, no caso a abertura \(\alpha \) (ver figura 1-c), isto é, \(\bar{\ell} = k\alpha \); e (c) as curvas de seleтивidade têm a mesma altura. Considere a notação seguinte: C(\ell) = captura de indivíduos com comprimento \(\ell \), \(\bar{\ell} \) = comprimento médio da curva normal de seleção ou comprimento em que o anzol é mais seletivo e \(k = constante a estimar \).

Comparando-se as capturas obtidas por dois anzós de abertura qualquer, digamos A e B, tem-se que

\[
\frac{C_A(\ell)}{C_B(\ell)} = \exp \left[- \frac{(\ell - \bar{\ell}_B)^2}{2s_B^2} \right] / \exp \left[- \frac{(\ell - \bar{\ell}_A)^2}{2s_A^2} \right] \tag{2}
\]

Por dedução e logaritimizando-se ambos os termos da equação 2, e, assumindo \(s_A^2 = s_B^2 = s^2 \) tem-se que

\[
\ln \left(\frac{C_A(\ell)}{C_B(\ell)} \right) = - \frac{(\ell - \bar{\ell}_B)^2}{2s_B^2} + \frac{(\ell - \bar{\ell}_A)^2}{2s_A^2} \tag{3}
\]

TABELA 1

Distribuição de frequência de comprimento (cm) do pargo, Lutjanus purpureus Poey, capturado em diversos experimentos com anzol realizados no período de setembro de 1984 a fevereiro de 1986.

Comprimento médio da abertura do anzol (\(\alpha \)), em cm.

<table>
<thead>
<tr>
<th>Classes de comprimento</th>
<th>Anzóis</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>613 (C_A)</td>
<td>614 (C_B)</td>
</tr>
<tr>
<td>30,1 – 34,0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>34,1 – 38,0</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>38,1 – 42,0</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>42,1 – 46,0</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>46,1 – 50,0</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>50,1 – 54,0</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>54,1 – 58,0</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>58,1 – 62,0</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>62,1 – 66,0</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total (n.⁰ – %)</td>
<td>111-10,5</td>
<td>144-13,6</td>
</tr>
</tbody>
</table>

| Abertura – \(\alpha \) (1)| 2,66 | 2,33 | 2,04 | 1,75 | 1,57 | 1,39 | |

(1) Valor médio estimado a partir da medição de pelo menos dez anzós de cada número.
Uma análise da expressão 3 revela a existência de uma relação linear entre \(\xi_n C_B (\xi) / C_A (\xi) \) e \(\xi \), sendo \(a \) e \(b \) respectivamente coeficiente linear e angular:

\[
a = - (\overline{\xi}_A - \overline{\xi}_B) / 2s^2 \quad \text{e} \quad b = (\overline{\xi}_A - \overline{\xi}_B) / s^2
\]

Um total de cinco regressões do tipo 3 foram determinadas através do método dos mínimos quadrados, considerando-se as capturas obtidas para cada número de anzol, agrupando-as duas a duas como indicado na tabela II. Todas estas equações mostraram-se significante ao nível de 5%.

A estimativa da curva de seletividade que tem como premissa a linearidade discutida em 3, depende dos valores de \(\overline{\xi} \) e \(s^2 \), a serem estimados a partir de \(a \) e \(b \), assumindo-se a relação \(\overline{\xi} = k \alpha \), sendo

\[
s^2 = - 2a (m_A - m_B) / b^2 (m_A + m_B)
\]

\[
K = - 2a / b (m_A + m_B)
\]

onde \(m_A \) e \(m_B \) são as dimensões da característica seletiva do aparelho de pesca. Os valores estimados de \(k \) e \(s^2 \) para cada agrupamento de captura são mostrados na tabela III.

O comprimento médio de seleção (\(\overline{\xi} \)) para as diversas medidas de abertura do anzol, \(\alpha \) (tabela I) e a amplitude de seleção (\(A \)) foram calculados segundo as equações:

\[
\overline{\xi} = K \alpha
\]

\[
A = \overline{\xi} \pm 2s
\]

utilizando-se valores médios de \(k \) e \(s^2 \) (tabela III).

O fator de seleção \(f_s = \overline{\xi} / \alpha \), que permite estimativas do comprimento médio de seleção, conhecida a abertura do anzol, e vice-versa, será a média de \(k \) (tabela III).

Segundo Ivo & Hanson (1982), o pargo alcança a primeira maturação sexual com um comprimento total médio de 42,0 cm. Assumindo este valor como média populacional \(x_o \), e conhecendo os valores de \(\overline{\xi} \) para cada número de anzol, é possível estimar, através do teste "Z" a proporção da captura, por número de anzol, que está abaixo do tamanho da primeira maturação sexual (tabela IV, figura III), sendo:

\[
Z = \frac{\overline{\xi} - x_o}{\frac{s}{\sqrt{\overline{\xi}}}}
\]

onde \(s_{\overline{\xi}} \) = desvio padrão médio.

DISCUSSÃO E CONCLUSÃO

Normalmente, em uma pesca comercial onde o esforço de pesca varia periodicamente, a abundância relativa da população é medida através da razão entre a captura e o esforço controlados. No caso específico do presente trabalho, a se considerar constantes o número de anzós por linha pargueira e a proporção dos vários números de anzós usados, a captura em número de indivíduos representa a abundância relativa da população do pargo. Assim, os anzós de números 615 a 617 mostraram-se mais eficientes na captura da espécie respectivamente com 215, 205 e 199 indivíduos.

A partir dos dados da tabela I, calculamos cinco equações de regressão (3)
entre os logaritmos das razões das capturas de dois anzóis de números consecutivos e o centro de classe de comprimento, cujos resultados estão mostrados na tabela II, tendo todas elas se mostrado significante ao nível de 5%. Desta forma foi possível estabelecer os valores de k e s^2 para cada par de anzol considerado e o comprimento médio de seleção (\bar{L}) para cada número de anzol (tabela III). Os anzóis de números 613 a 616 capturam indivíduos com comprimento médios respectivos de 69,7 cm, 61,0 cm 53,4 cm e 45,9 cm, portanto superiores a 42,0 cm definido como comprimento médio de primeira maturação sexual (Ivo & Hanson, 1982). Os anzóis de números 617 e
PARGO: SELETIVIDADE DO ANZOL

TABELA III
Fator de seletividade (k) estimado a partir da abertura.

<table>
<thead>
<tr>
<th>Número de anzol</th>
<th>k</th>
<th>s²</th>
<th>\bar{c} (cm)</th>
<th>A (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>22,7</td>
<td>156,25</td>
<td>69,7</td>
<td>43,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>96,3</td>
</tr>
<tr>
<td>614</td>
<td>30,8</td>
<td>357,21</td>
<td>61,0</td>
<td>34,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87,6</td>
</tr>
<tr>
<td>615</td>
<td>24,5</td>
<td>158,76</td>
<td>53,4</td>
<td>26,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80,0</td>
</tr>
<tr>
<td>616</td>
<td>26,6</td>
<td>90,25</td>
<td>45,9</td>
<td>19,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72,5</td>
</tr>
<tr>
<td>617</td>
<td>26,4</td>
<td>179,50</td>
<td>41,1</td>
<td>14,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67,7</td>
</tr>
<tr>
<td>618</td>
<td>26,2</td>
<td>176,89</td>
<td>36,4</td>
<td>9,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63,0</td>
</tr>
</tbody>
</table>

A (amplitude de seleção) = $\bar{c} \pm 2s$, para um intervalo de confiança = 95%.

TABELA IV
Valores do Teste "Z", por número de anzol.
Áreas S e S' correspondentes, respectivamente, a Z/2 e à proporção de indivíduos liberados.

<table>
<thead>
<tr>
<th>Anzol</th>
<th>"Z"</th>
<th>Estimativas</th>
<th>S</th>
<th>S'</th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>-2,08</td>
<td>48,1</td>
<td>1,9 (50% - S)</td>
<td></td>
</tr>
<tr>
<td>614</td>
<td>-1,42</td>
<td>42,2</td>
<td>7,8 (50% - S)</td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>-0,86</td>
<td>30,5</td>
<td>19,5 (50% - S)</td>
<td></td>
</tr>
<tr>
<td>616</td>
<td>-0,29</td>
<td>11,4</td>
<td>38,6 (50% - S)</td>
<td></td>
</tr>
<tr>
<td>617</td>
<td>0,07</td>
<td>2,8</td>
<td>52,8 (50% + S)</td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>0,42</td>
<td>16,3</td>
<td>66,3 (50% + S)</td>
<td></td>
</tr>
</tbody>
</table>

618 apresentam comprimentos médios de captura respectivamente iguais a 41,1 cm e 36,4 cm, desta forma, menores do que o comprimento médio de primeira maturação sexual.

Sabendo que a relação estoque reprodutor/recrutamento será teoricamente mantida em equilíbrio, se entre outros parâmetros populacionais, o comprimento médio de captura for aproximadamente igual ao comprimento médio de primeira maturação sexual. Deste modo, somente os anzós de números 613 a 616 deveriam ser utilizados na pesca do pargo. Os anzós de números 617 e 618 não deveriam ser utilizados na pesca do recurso.

Com base no fator de seleção ($f_s = 26,2$) – tabela III, estima-se que um anzol com abertura $\alpha = 1,6$ cm deveria capturar indivíduos do pargo com comprimento total médio de seleção igual a 42,0 cm.

Os resultados do teste "Z" (tabela IV, figura 3) mostram que os anzós de números 616 a 618 capturam, isoladamente, porcentagens superiores a 38% de indivíduos cujo comprimento total é inferior a 42,0 cm. Das capturas realizadas pelos demais anzós menos de 20% são menores do que 42,0 cm.

O anzol de número 615 apresenta-se como o mais recomendável para a captura do pargo, *Lutjanus purpureus* Poey, por ser o mais eficiente e permitir a proteção do estoque jovem. Entretanto, sem apresentar a mesma eficiência do anzol número 615, os anzós de números 614 e 613 também devem ser utilizados, pois permitem com certa segurança a proteção do estoque jovem.

SUMMARY

Different hook sizes are used to catch Caribbean red snapper, *Lutjanus purpureus* Poey, in North Brazil, without any information on the hook
selectivity. Using small hooks might be one of the factors responsible for increasing catch of juvenile individuals (total length smaller than 42.0 cm) which make up more than 25% of the landings averaged 4,800 metric tons a year.

In order to make a comparative selectivity study, experiment were done using six different MUSTAD — type hook sizes numbered 618 to 613. Vertical longlines with thirty-six hooks were used in a form that each hook size occupied six different depth position on the water column. All the catches were made in the North Region of Brazil, between 46°00'W and 50°00'W.

A length distribution (4.0 cm interval) for each hook number showed a normal distribution from which it was possible to estimate the selectivity parameters for the hooks used on the Caribbean red snapper fishery. The following results were obtained for the mean selection length (cm) considering the hook sizes: 618 = 34.6; 617 = 41.1; 616 = 45.0; 615 = 53.4; 614 = 61.0 and 613 = 69.7.

To protect juvenile individuals, only hook numbers 615, 614 and 613 should be used to fish Caribbean red snapper.

BIBLIOGRAFIA

