IDADE E CRESCIMENTO DA GUAIUBA, Lutjanus chrysurus (BLOCH, 1791), NA COSTA NORDESTE DO BRASIL

Age and growth of the yellowtail snapper, Lutjanus chrysurus (Bloch, 1791), off Northeast Brazil

Moustapha Diedhiou¹, Beatrice P. Ferreira¹, Sérgio M. Rezende¹

RESUMO

A guaiúba, Lutjanus chrysurus, é uma espécie de peixe recifal costeira, frequentemente capturada nas pescairas de linha-de-fundo na plataforma e talude continentais da região Nordeste, com forte tendência de queda da produção nos Estados do Ceará até a Bahia no período 1995-1999. O comprimento individual apresentou diferenças estatisticamente significantes entre estados, com exceção de Pernambuco e Ceará. A idade e taxa de crescimento foram determinadas a partir da observação de marcas de crescimento em otólitos, indicando idades entre 0 e 17 anos. Entre os otólitos interiores e os secionados, as leituras coincidem em 25,24% das observações; em 43,81% contou-se mais anéis nos secionados e 30,95% nos interiores. Para exemplares que apresentam idades mais avançadas (maiores que 10 anos) observou-se uma maior quantidade de anéis em otólitos secionados. Para exemplares com idades intermediárias (entre 5 e 10 anos) a contagem de anéis foi equivalente nos otólitos interiores e secionados. Para exemplares com idades inferiores a 5 anos, a contagem de anéis é maior quando o otólito inteiro é observado. A variação e a razão mensal e bimestral do incremento marginal médio indicam a formação de um anel opaco por ano nos otólitos da guaiúba. A formação do anel opaco ocorre nos meses de setembro a janeiro. Os parâmetros da equação de crescimento apresentaram os seguintes valores: L∞ = 62,0 cm; K = 0,05 ano⁻¹; t0 = - 8,1 ano⁻¹. Foi observada uma grande variabilidade de tamanhos por classe etária, o que compromete seriamente a obtenção de estimativas de idade a partir de distribuições de frequência do comprimento.

Palavras-chave: guaiúba, Lutjanus chrysurus, idade, crescimento, otólitos.

ABSTRACT

The yellowtail snapper, Lutjanus chrysurus, is a coastal reef species which is frequently caught in the bottom line fisheries along the continental shelf and slope of Northeast Brazil, with a strong tendency of decrease in its landings over the years 1995-1999. The fork length frequency distributions were significantly different between states, with the exception of Pernambuco and Ceará. The age and growth rate were determined from otolith readings and observations of opaque and translucent bands, indicating the existence of 0 to 17 years old individuals. Readings of whole and sectioned otoliths were identical in 25.24% of the observations while in 43.81% more rings were read in sectioned otoliths and 30.95% more rings were read in whole otoliths. For individuals older than 10 years more rings were always observed in sectioned otoliths, for individuals with ages between 5 and 10 years the ages were similar, while for individuals younger than 5 years more rings were observed in sectioned otoliths. The parameters of the growth equation presented the following values: L∞ = 62.0 cm; K = 0.05 year⁻¹; t0 = - 8.1 year⁻¹. A great variability of sizes at a given age was observed, what seriously hampers attempts of age determination from length frequency distributions.

Key-words: yellowtail snapper, Lutjanus chrysurus, age, growth, otoliths.

¹ Departamento de Oceanografia, Universidade Federal de Pernambuco, Campus Universitário, Recife, PE 50740-550. E-mail: beatrice@ufpe.br
INTRODUÇÃO

Na pesca comercial, a guaiúba é capturada principalmente com arrastão-de-praia, rede-de-arrasto, rede-de-espera, armadihas com isca, e linha-de-mão (Manooch & Drennon, 1987).

Em Cuba, na costa oriental sul, Carrillo de Albornoz & Ramiro (1988) realizaram estudos sobre idade-em crescimento de *L. chrysurus*, com leitura de marcas de crescimento observadas no osso uropel, além de pesquisas sobre a reprodução e alimentação da espécie; na plataforma sul-oriental. A fecundidade foi determinada por Carrillo de Albornoz et al. (1989) e Carrillo de Albornoz & Grillo (1993) e as fases de maturação gonadal por Carrillo de Albornoz & Rose, (1992).

No Nordeste do Brasil, este peixe aparece com muita regularidade nas pescarias artesanais e comerciais, onde é capturado com linha-de-mão, arpão, covo para peixe e curral-de-pesca. Registros sobre a biologia e a ecologia deste recurso no Brasil são raros. Recentemente, Calado Neto et al. (1998) estudaram os aspectos da sua dinâmica populacional, dando ênfase à biologia reprodutiva e à idade e crescimento de exemplares provenientes da pesca no Estado de Pernambuco, através de rotinas estatísticas do programa FISAT. Dados oficiais da captura em peso da guaiúba estão disponíveis pelo Programa de Estatística Pesqueira (ESTATPESCA) do IBAMA.

No presente estudo são abordados os aspectos da pesca de *L. chrysurus*, a estrutura do tamanho de captura, a idade e crescimento, como primeiro estudo no Nordeste do Brasil a ser realizado a partir de otólitos inteiros e secionados desta espécie.

MATERIAL E MÉTODOS

As amostragens foram feitas durante os desembarques nas praias, entrepostos de pesca, cooperativas, mercados e a bordo (sempre que houve a possibilidade de embarque), com base em pescarias comerciais realizadas na plataforma e taludes continentais, e nos bancos oceânicos, na zona compreendida entre o Estado do Ceará e o norte da Bahia, a partir de 40 m de profundidade (Figura 1).

Dentro da área de interesse do presente estudo, a pesca tem característica multiespecífica com variabilidade regional quanto ao número de anzóis, entre as diferentes localidades ao longo da costa, onde a guaiúba é uma das espécies de maior importância nas capturas realizadas com linhas-de-mão de dois ou três anzóis.

Natureza. Para cada indivíduo foram determinados os comprimentos total (CT), furcal (CF), e padrão (CP), e os pesos total (PT) e eviscerado (PE) com o auxílio de uma ficha métrica com precisão de 0,1 cm e uma balança com precisão de 0,1 g. O sexo foi determinado a partir da observação direta das gônadas.

A estrutura de tamanho de captura dos exemplares estudados foi determinada a partir das análises das distribuições de frequências dos comprimentos furcais por estado.

O estudo da relação idade-crescimento de L. chrysurus foi feito através da interpretação marcas de crescimento dos pares de otólios sagitae de 673 exemplares. Os otólios foram extraídos, removendo-se as partes superiores do bulbo ótico com uma tesoura expondo as cápsulas auditivas, com o auxílio de uma pinça de ponta fina. Cada par de otólios foi lavado com água e acomodado seco em tubo plástico com uma etiqueta contendo código, e dados de biometria e sexo dos exemplares.

Os otólios inteiros foram observados, submersos em recipiente preto contendo óleo mineral, o lado côncavo virado para cima, com uma lupa estereoscópica Zeiss (Stemi 2000) com luz refletida. A análise prévia de uma subamostra permitiu estabelecer os critérios de leitura baseando-se nas diferenças de contraste entre as bandas opacas e translúcidas. Foi também verificada a variação no número de anéis contados entre os otólios direito e o esquerdo. De modo geral, considerando-se a ocorrência de quebra por ocasião da coleta, o otólio direito foi escolhido para se proceder à leitura das bandas etárias por se apresentar inteiro na maioria das amostras.

Os otólios esquerdos de cada par (N = 564) foram emblocados em resina acrilica, usando-se um molde de silicone em pequenos blocos retangulares (Rauke, 1975, Bedford, 1977; Morales-Nin, 1994) e secionados com o auxílio de uma serra isométrica metadegefrá de lâmina adiamantada de baixa rotação. Testes preliminares permitiram fixar a espessura de 0,5 mm como ideal para as leituras. Os cortes foram fixados em lâmina e lamínula com cola histológica (entellan) e observados com uma lupa estereoscópica de luz refletida em fundo preto.

Os otólios inteiros e secionados foram observados três vezes, pelo mesmo autor, com os seguintes passos: (a) identificação do núcleo do otólio e o primeiro anel opaco e entre os dois uma banda translúcida; (b) verificação da continuidade das marcas opacas entre os dois lados do otólio e a integridade do último anel opaco (completamente formado ou não), contando somente se identificado entre duas marcas translúcidas.

Os intervalos de tempo entre as leituras foram de aproximadamente 15 dias. Das três leituras efetuadas, foi escolhido para a determinação da idade do peixe o número de anéis mais frequente ou, alternativamente, o valor intermediário entre as três leituras.

A confiabilidade das leituras foi testada por um segundo leitor mais experiente em determinação de idade em peixes para uma subamostra de 37,55% de otólios inteiros e todos os secionados. O erro percentual médio (EMP) foi estimado de acordo com a expressão matemática de Beamish & Fournier (1981):

\[
EMP = N^{-1} \sum_{j=1}^{N} \left[R^{-1} \times \sum_{i=1}^{R} \left(X_{ij} - X_i \right)^2 \right]^{-1}
\]

onde, N = número de amostras (otólios lidos); R = número de determinações de idade para a amostra; \(X_{ij} \) = idade determinada; \(X_i \) = média entre as determinações.

O incremento marginal foi medido com o auxílio de uma ocular micrométrica adaptada à lupa, para os otólios de 1 a 10 anéis quando legíveis e bem discerníveis (os de maior número são difíceis de ler principalmente perto da borda). A média mensal da razão do incremento marginal \((r_m)\) foi determinada com as mesmas amostras medindo-se à distância entre o penúltimo e o último anel \((R_p)\) e o incremento marginal \((R_m)\). A razão \(r_m\) foi calculada a partir da Equação 2, sugerida por Bullock et al. (1992). As variações mensal e bimensal do incremento marginal médio e a razão de incremento marginal médio foram determinadas. Esta análise permite determinar o número de anéis a época de sua formação.

\[
r_m = \sum_{i=1}^{n} \left(R_2 / R_1 \right)
\]

onde, \(R_1 \) = distância entre o início do penúltimo e o início do último anel; \(R_2 \) = distância entre o início do último anel até a borda do otólio; \(r_m \) = razão do incremento marginal.

O modelo de crescimento de von Bertalanffy (1938) foi ajustado aos dados de idade e comprimento através de uma rotina de ajuste não linear utilizando o critério dos mínimos quadrados:

\[
L_t = L_{\infty} \left[1 - e^{-K(t-t_0)} \right]
\]

onde, \(L_t \) = comprimento médio (cm) estimado relativo à idade t; K = parâmetro que mede a taxa de
crescimento; \(L_{\infty} \) = comprimento máximo teórico; \(t \) = idade do peixe; \(t_{o} \) = idade hipotética quando \(L_{t} = 0 \).

RESULTADOS

Entre os anos de 1994 e 1999, a produção total de peixes apresentou padrões de variação diferentes entre os estados, com predominância do Ceará e a Bahia, cada um com uma média de 5.000 t/ano, seguidos do Rio Grande do Norte, e baixa produção nos outros estados. Apenas a Bahia mostra um aumento acentuado nas capturas dos últimos anos e, nos demais, tendência constante ou em declínio (Figura 2).

A produção total de guaiúba no conjunto dos estados, no período 1994/99, foi estimada em 17.882 t/ano, ou seja, 18,7% do total global de produção de peixes e 10,8% de toda a produção pesqueira (Figura 3). Constata-se, portanto, uma queda de produção para todos os estados, principalmente na Bahia (de 1.352 t em 1997 para 452 t em 1998).

O comprimento furcal da guaiúba apresenta uma distribuição normal, sendo a moda estabelecida entre 30,00 cm e 32,00 cm (N = 3.708), a amplitude variando de 11,00 cm a 86,90 cm, com média de 33,18 cm e desvio padrão de 6,56 cm (Figura 4).

Os valores do comprimento furcal agrupados por estado mantêm uma distribuição unimodal (Figura 5), mas com variações nos tamanhos capturados. No Ceará e no Rio Grande do Norte, no setor norte, os tamanhos de captura variaram de 15,50 cm a 86,90 cm e 12,00 cm a 51,00 cm, com as médias 33,22 cm e 32,02 cm, respectivamente e moda única entre 32,00 cm e 34,00 cm. Nos estados do setor sul, as modas ocorreram sempre entre 36,00 cm e 38,00 cm. As amplitudes de distribuição e os comprimentos furcais médios foram respectivamente: de 11,00 cm a 61,00 cm e 33,40 cm, em Pernambuco, e de 25,00 cm a 52,00 cm e 37,79 cm, em Alagoas.

Figura 4 - Distribuição de frequência de comprimento furcal da gaiúba, *Lutjanus chrysurus*.

Quando consideramos as divisões entre os setores norte (CE e RN) e o sul (PE e AL) a tendência unimodal do comprimento se mantém, com as seguintes estimativas - Norte: amplitude = 12,00 - 86,90 cm; moda = 34,00 e 36,00 cm; média = 32,82; Sul: amplitude = 11,00 - 73,00 cm; moda = 36,00 e 38,00 cm; média = 35,35 cm (Figura 6).

As medidas do comprimento (CT, CF e CP) se correlacionam linearmente (Y = bX + a) entre elas. As equações resultantes dessa correlação são expressas da seguinte forma:

CF = 0,8107 CT + 1,5744 (R² = 0,94; N = 2.478)
CP = 0,7180 CT - 0,1470 (R² = 0,91; N = 1.490)
CP = 0,9013 CF - 1,6617 (R² = 0,91; N = 1.790)

A relação entre PE e CF resultou na seguinte equação potencial (Figura 7):

PE = 0,0318 CF^{2.7413} (R² = 0,93; N = 152)

Em L. chrysurus, o par de otólitos sagitta é o maior entre os três encontrados na espécie. Achatado lateralmente, possui um formato oval com a face anterior estreita e extremidade arredondada, e a fase posterior pontiaguda. A região ventral é menos curva, com borda lisa, enquanto a borda dorsal possui a extremidade cerrada e fraturas. A espessura do otólito diminui ligeiramente do centro para a periferia.

A leitura dos otólitos inteiros ou secionados em lupa stereoscópica com luz refletida revela um padrão alternado de bandas opacas e translúcidas. Admite-se que a idade do peixe corresponda à formação das marcas opacas. Quando observadas em otólitos inteiros, as bandas opacas se caracterizam por uma coloração branco-leitosa e são geralmente mais largas que as translúcidas, de cor acinzentada e clara. Na região central do otólito, a opacidade é maior e diminui em direção à periferia, e o contraste aumenta entre as marcas.

A relação entre peso do otólito direito e esquerdo é linear e corresponde a uma bissetriz do quadrante (Figura 8), sendo expressa pela equação:

PotE = 1,0048 PotD + 0,00004 (R² = 0,991; N = 439)

sendo PotD e PotE o peso dos otólitos direito e esquerdo, respectivamente.

O peso dos otólitos aumentou potencialmente em função do comprimento fúcral (CF) de acordo com a seguinte equação (Figura 9):

PotD = 0,0001* CF^{1,9706} (R² = 0,8997; N = 560)
PotE = 0,0001* CF^{2,0173} (R² = 0,9039; N = 470)

O peso dos otólitos aumentou linearmente em relação à idade do peixe de acordo com a equação (Figura 10):

PotE = 0,0002 t + 0,0353 (R² = 0,7945; N = 123)
PotD = 0,0002 t + 0,0356 (R² = 0,7822; N = 115)

Os otólitos inteiros dos indivíduos jovens são mais translúcidos e são lidos com mais facilidade, e o contraste entre as bandas translúcidas e as opacas é maior. Os indivíduos com idade mais avançada possuem otólitos mais espessos e a sobreposição das bandas nas margens dificulta o discernimento das marcas opacas.

Figura 6 - Distribuição de frequência de comprimento fúcral da guaiuba, Latijurus chrysurus, nos setores norte (Ceará e Rio Grande do Norte) e sul (Pernambuco e Alagoas) do Nordeste do Brasil.
A leitura do número de anéis nos otólitos secionados foi bem sucedida para a maioria dos casos. Próximo ao núcleo a primeira marca opaca era visível e separada do centro com uma larga banda translúcida. Na zona periférica as bandas translúcidas, geralmente muito mais estreitas, tendiam a desaparecer.

A precisão das leituras, tanto em otólitos inteiros como em secionados, foi verificada através do cálculo do EMP (Erro Médio Percentual). Nos otólitios inteiros, o EMP foi o menor (8,95%) entre as duas primeiras leituras e chegou a 16,98% na terceira leitura. Nos secionados, a diferença foi menor entre a segunda e a terceira leitura (9,85%). Com o segundo leitor, o EMP variou de 9,16% a 19,3% nos inteiros e 13,85% nos secionados para as leituras do mesmo autor.

As leituras de marcas de crescimento da guaiúba com otólitos inteiros (N=259) permitiram determinar idades de 1 a 15 anos enquanto nos secionados foram determinadas idades de 0 a 17 anos. Os dois conjuntos de idades, para otólitos inteiros e secionados distribuíram-se normalmente (N=210 e P=0,899 nos inteiros; N=210 e P=0,999 nos secionados) e teste t empelhado não detectou diferenças significativas entre as duas idades (t = -2,144; P=0,91).

Entre zero e 5 anos, as estimativas de idades provenientes das leituras de otólitos inteiros foram maiores (30,95%) que aquelas obtidas nos secionados; aproximadamente equivalentes (25,23%) entre 5 e 10 anos, e menores (43,80%) para as idades acima de 10 anos (Figura 11).
As análises da variação mensal do incremento marginal médio (Figura 12) e da razão de incremento marginal médio (Figura 13), determinado a partir da Equação 2, revelam formação de um anel opaco por ano em *L. chrysurus*. As marcas se formam nos meses de setembro e janeiro, que apresentaram os menores valores do incremento e da razão do incremento marginal médio. As mesmas tendências foram observadas quando os dados foram agrupados por bimestres (Figuras 14 e 15). Durante os outros meses acorre formação do anel translúcido, que é mais fino e às vezes pouco visível nos indivíduos maiores.

Com os dados da idade determinados através de leituras de otólitos secionados, a curva de crescimento do modelo de von Bertalanffy (1938), em comprimento furcal (cm) apresentou a seguinte equação (Figura 16):

\[L_t = 62,00 \left[1 - e^{-0.05(t-4.1)} \right] \]

![Figura 12 - Variação mensal do incremento marginal médio da guaiúba, *Lutjanus chrysurus*.](image12)

![Figura 13 - Variação mensal da razão de incremento marginal médio da guaiúba, *Lutjanus chrysurus*.](image13)

![Figura 14 - Variação bimensal do incremento marginal médio da guaiúba, *Lutjanus chrysurus*.](image14)
do pescado. O aumento do esforço de pesca com a introdução de novas embarcações, o crescimento quantitativo de barcos motorizados, o deslocamento de embarcação de outras regiões, a descoberta de novos pesqueiros ou aumento da quantidade de barcos arrendados podem explicar este fato.

A pesca de *L. chrysurus* foi relativamente constante em Pernambuco e Bahia, embora mostrando leves tendências de queda nos últimos anos, que podem refletir a transferência de empresas de pesca destes estados para o Rio Grande do Norte. Neste estado ocorreu um aumento de esforço de pesca e, ao mesmo tempo, uma diminuição significativa da produção de guaiúba, apesar de o volume total de pescado ter-se mantido constante. O Ceará registrou quedas sucessivas desde 1995 mesmo com as pequenas oscilações no volume total de peixes capturados. O caso mais preocupante foi registrado na Bahia, onde a produção de *L. chrysurus* caiu brutalmente em 1998, provavelmente devido à transferência de esforço para outras espécies ou como indicativo de um processo de sobrepesca dos estoques mais vulneráveis a atividade pesqueira.

A amplitude e a média do comprimento da guaiúba no Nordeste do Brasil nas pescarias de linha-de-mão foram maiores do que em Porto Rico, onde os indivíduos variam de 18 a 57 cm de comprimento furcal com moda em torno de 29 cm, reduzindo amplitude e moda para 15 – 38 cm e 22 cm nas pescarias com armadilha (Dennis, 1987).

Foram constatadas diferenças significativas na distribuição do comprimento furcal dos exemplares analisados em relação às áreas de pesca, as quais são atribuídas a técnicas de pesca, forma de amostrar ou características ambientais. A maioria dos peixes recifais apresenta distribuição ontogênica por profundidade (Hilborn & Walters, 1992), o que significa que indivíduos migram para regiões mais profundas e distantes da costa à medida que crescem. Com isto, a comparação das capturas, em termos de tamanho, está diretamente relacionada à profundidade do local de pesca, que varia entre estados e a época do ano (Ferreira & Rezende, 1999).

As diferenças observadas entre as distribuições de frequência de comprimento furcal foram marcantes entre todos os estados, com exceção de Pernambuco e Ceará. Há diferenças significativas entre as capturas dos setores norte e sul do Nordeste, apesar das semelhanças observadas entre as estruturas de tamanho de captura entre os dois estados. Essas variações são possivelmente associadas a fatores diferentes das correntes. Como não foram evidenciadas grandes migrações desta espécie, a não ser aquelas de caráter reprodutivo identificadas por Baelde (1985), supõe-se que em cada estado a pesca esteja dirigida a um esto-

DISCUSSÃO

A guaiúba é um peixe bastante capturado nas pescarias artesanais e industriais, e constitui um importante produto de exportação nos estados do Nordeste do Brasil. A escassez de dados sobre sua ecologia, biologia e dinâmica populacional tornou a sua pesca suscetível ao descontrole, motivo por que a exploração desse recurso deve ser acompanhada de estudos detalhados, que possibilitam a definição de estratégias de uso controlado.

O aumento da produção total de pescado na Bahia, no período 1995-1999, é um caso isolado, não explica a situação geral da pesca na região e não significa que houve um aumento de disponibilidade.
que isolado. Carillos de Albornoz (1988) encontrou diferenças significativas na relação peso comprimento em função do local de captura, pelo que recomenda estudos separados para a espécie levando-se em conta a área de distribuição.

Até recentemente, acreditou-se que as espécies tropicais não deveriam apresentar padrão discernível ou interpretável em estruturas rígidas como otólitos, razão pela qual os estudos sobre idade e crescimento de peixes tropicais foram escassos em comparação com os de regiões temperadas (Longhurst & Pauly, 1987), mas muito mais frequentes com base na análise da distribuição de frequência de comprimento (Morales-Nin, 1989). O uso de anéis diários para determinar o crescimento em peixes tropicais (Panella, 1971), foi considerado como uma nova alternativa (Campana & Neilson, 1985; Longhurst & Pauly 1987; Sparre et al., 1989), mas esse método foi considerado muito custoso e demorado, além de não se aplicar a espécies com grande longevidade (Longhurst & Pauly, op. cit.).

A dificuldade de leitura em otólitos inteiros foi reconhecida por muitos pesquisadores, por isso a decisão de secionar otólitos tem sido tomada com muita frequência, principalmente por fornecer mais precisão, menos subjetividade e mais segurança na determinação das idades (Morales-Nin, 1989; Morales-Nin & Ralston, 1990; Ferreira & Russ, 1994 e 1992; Manooch III, 1995; Milton et al., 1995; Lima, 1997; Rezende, 1998).

Em L. chrysurus as leituras dos otólitos secionados apresentaram a maior precisão. A presença de um padrão de anéis múltiplos, anéis translúcidos muito estreitos perto da borda e a compactação dos anéis opacos têm dificultado a interpretação das leituras particularmente em indivíduos com idade avançada, fenômeno também observado por Johnson (1983).

Nos otólitos inteiros, a precisão foi maior em exemplares com idades inferiores a 5 anos, o inverso ocorrendo nos secionados. A perda de anéis em otólitos secionados de exemplares com idade menor, durante oprocessamento das lâminas, e a opacidade dos otólitos de peixes com idade avançada podem ser apontados como as principais causas dessas diferenças (Ferreira & Russ, 1994; Newman et al., 1996; Rezende, 1999).

Contudo, o uso de otólitos secionados para estudo de idade e crescimento em guaiuba proporcionou os melhores resultados. As idades determinadas com os otólitos inteiros variaram de 4 a 15 anos, enquanto nos secionados elas foram de 0 a 17 anos. As leituras em otólitos secionados coincidiram em 25,23% dos casos com as leituras em otólitos inteiros, sendo que em 30,95% dos casos as idades nos inteiros foram maiores em 43,80% nos secionados. Usando a mesma metodologia com otólito inteiro, Johnson (1983) e Piedra (1969) confirmaram que, sob a luz refletida, o padrão alternado de bandas opacas e translúcidas é visível na face côncava do otólito e podem ser contadas. Johnson (1983) constatou que 9% dos otólitos apresentaram mais bandas em otólitos secionados que em inteiros e acha que essa diferença é devida ao aumento da espessura e da curvatura dos otólitos em função do crescimento do peixe, justificando o uso da estrutura interna do otólito (secionado) na determinação da idade de L. chrysurus.

Os resultados de análise do incremento marginal evidenciaram a formação de um novo anel opaco e único por ano e ocorre nos meses de setembro a janeiro. Isto já foi observado e confirmado para a mesma espécie por vários autores como Jonhson (1983), Manooch III & Drennon (1987) e Carillo de Albornoz & Ramiro (1988).

A leitura dos otólitos inteiros foi mais difícil e menos precisa. A maioria dos peixes era de idade avançada e possuíam otólitos espessos e opacos, e com menos legibilidade do contraste alternado. Nos peixes de idade mais avançada, a dificuldade a leitura desses anéis pode ser atribuída ao efeito de borda, da sobreposição das bandas opacas e das bandas translúcidas muito finas. Por isso o cálculo da época de formação do anel foi feito apenas em otólitos de indivíduos com idades de 1 a 10 anos, fato também registrado para Epinephelus itajara (Bullock et al., 1992) e Mycteroperca bonaci (Crabtree & Bullock, 1998).

Neste trabalho, apesar de não ter sido feita a validação das leituras, assumimos que uma marca opaca a formada por ano, fato confirmado por vários estudos feitos sobre idade e crescimento desta espécie (Jonhson, 1983); Manooch III & Drennon, 1987; Carillo de Albornoz & Ramiro, 1988). A idade variou de 0 a 17 anos, registrando-se grande variabilidade de tamanhos em relação à idade.

Os parâmetros de crescimento de von Bertalanffy ($L_\infty = 62,00$ cm; $K = 0,05$ ano$^{-1}$ e $t_\infty = -8,1$ anos) foram muito diferentes daqueles determinados por outros pesquisadores como, por exemplo, o valor de K muito menor ($0,05$) indicando um crescimento teórico muito lento dessa espécie na região Nordeste do Brasil. Estes resultados estão provavelmente relacionados com a falta de exemplares jovens nas amostras e sua consequente influência sobre o cálculo dos parâmetros de crescimento (Ferreira & Russ, 1994). Alguns autores têm sugerido o ajuste de duas curvas de idade e crescimento para as espécies de vida longa, uma para a
fase juvenil e outra para a fase adulta (Craig et al., 1997; Craig, 1999). Neste caso podemos considerar que a curva calculada reflete o crescimento numa fase adulta, durante a qual a espécie é susceptível à pesca na Zona Econômica Exclusiva.

A grande variação do comprimento médio em relação à idade indica a ocorrência de variabilidade individual no crescimento, resultado também constatado por Johnson (1983) em peixes desta espécie. O mesmo autor afirma que as guaiúbas são peixes de vida longa que chegam a idade mínima de 14 anos e o tamanho de captura muito variável dentro do grupo de idade (os comprimentos furcais de peixes de quatro anos podem variar de 23,50 a 45,10 cm), em consequência considera os comprimentos furcais não eram bons indicadores de idade para este peixe.

CONCLUSÕES

1. A análise temporal e espacial da evolução das capturas, indicou uma queda geral da produção nos últimos anos, mesmo com o aumento do esforço, levando a suspeita de sobrepesca e/ou deslocamento do esforço para outras espécies.

2. Os otólitos são bons indicadores de idade e são de utilidade para estimar taxas de crescimento em L. chrysuras, por terem apresentado uma sucessão de bandas opacas e transúcidas bem distinguíveis principalmente em otólitos secionados.

3. A leitura dos otólitos inteiros tende a superestimar as idades nos juvenis, o inverso ocorre nos secionados que mesmo assim retornam resultados mais precisos.

4. A análise do incremento marginal mostrou que a espécie forma uma única banda opaca por ano.

5. A grande variabilidade dos tamanhos em relação à idade mostra que este método é mais indicado para a espécie e que o comprimento não é um bom indicador de L. chrysuras.

REFERÊNCIAS BIBLIOGRÁFICAS

Carvalho, V. A. & Branco, R. Relação das espécies marinhas e estuarias do Nordeste brasileiro. Programa de

FishBase. Synopsis of biological data on yellow snapper *Ocyurus chrysurus* (Bloch, 1791), 1996.

Mathews, C. P. An account of some of methods of overcoming errors in ageing tropical and subtropical fish populations when hard tissue growth markings are unreliable and the data are sparse, p. 159-174, in Bagenal, T. B. (ed.), Ageing of fish. Unwin Brothers Limited, Old Working, 1974.

