Monitoring of supplemental oxygen supply in neonates: challenges and potentialities

Keywords: Oxygen Inhalation Therapy; Infant, Newborn; Nursing; Neonatology; Patient Care Team.

Abstract

Objective: to evaluate the practices of the multidisciplinary team in monitoring supplemental oxygen offered to newborns. Methods: cross-sectional study with data from an observational instrument related to oxygen supply monitoring. Data collection occurred within one month, in the morning shift, and involved the observation of the practice of 104 professionals during a total of 22 days, and the checking of 188 monitors by the researcher. Results:the ratio monitors in the correct setting/monitors turned off or with altered setting resulted in a median of 0.43 and a standard deviation of 0.17.That is, 57.0% of the monitors were not properly set up. It was noteworthy that monitoring and blender were used in 100.0% of the newborns. Conclusion: it was found that the practices developed by the multidisciplinary team in this institution are in agreement with the Brazilian Society of Pediatrics, as monitoring and blender were used in all newborns receiving supplemental oxygen.

References

Cummings JJ, Lakshminrusimha S. Oxygen saturation targeting by pulse oximetry (SpO2) in the Extremely Low Gestational Age Neonate (ELGAN): a quixotic quest. Curr Opin Pediatr. 2017; 29(2):153-8. doi: http://dx.doi.org/10.1097/MOP.0000000000000458

Zoban P. Optimal oxygen saturation in extremely premature neonates. Physiol Res. 2019; 68(2):171-8. doi: http://dx.doi.org/10.33549/physiolres.933987

Cummings JJ, Polin RA. Oxygen targeting in extremely low birth weight infants. Pediatrics. 2016; 138(2):e20161576. doi: http://dx.doi.org/10.1542/peds.2016-1576

Van Zanten HA, Kuypers KLAM, Stenson BJ, Bachman TE, Pauws SC, Te PAB. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2017; 102(5):395-9. doi: http://dx.doi.org/10.1136/archdischild-2016-312172

Torres-Cuevas I, Parra-Llorca A, Sánchez-Illana A, Nuñez-Ramiro A, Kuligowski J, Cháfer-Pericás C, et al. Oxygen and oxidative stress in the perinatal period. Redox Biol. 2017; 12:674-81. doi: http://dx.doi.org/10.1016/j.redox.2017.03.011

Manley BJ, Kuschel CA, Elder JE, Doyle LW, Davis PG. Higher rates of retinopathy of prematurity after increasing oxygen saturation targets for very preterm infants: experience in a single center. J Pediatr. 2016; 168:242-4. doi: http://dx.doi.org/10.1016/j.jpeds.2015.10.005

Van den Heuvel MEN, Van Zanten HA, Bachman TE, Te PAB, Van Kaam AH, Onland W. Optimal target range of closed-loop inspired oxygen support in preterm infants: a randomized cross-over study. J Pediatr. 2018; 197:36-41. doi: http://dx.doi.org/10.1016/j.jpeds.2018.01.077

Dargaville PA, Sadeghi Fathabadi O, Plottier GK, Lim K, Wheeler KI, Jayakar R, et al. Development and preclinical testing of an adaptive algorithm for automated control of inspired oxygen in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2017; 102(1):31-6. doi: http://dx.doi.org/10.1136/archdischild-2016-310650

Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Plavka R, et al. European consensus guidelines on the management of respiratory distress syndrome - 2016 Update. Neonatology. 2017; 111(2):107-25. doi: http://dx.doi.org/10.1159/000448985

Almeida MFB, Guinsburg R. Reanimação do recém-nascido ≥ 34 semanas em sala de parto: Diretrizes 2016 da Sociedade Brasileira de Pediatria [Internet]. 2016 [citado 2019 Abr 12]. Disponível em:https://www.sbp.com.br/fileadmin/user_upload/sSBPReanimacaoRNMaior34semanas26jan2016.pdf

Guinsburg R, Almeida MFB. Reanimação do recém-nascido < 34 semanas em sala de parto: Diretrizes 2016 da Sociedade Brasileira de Pediatria [Internet]. 2016 [citado 2019 Abr 12]. Disponível em:https://www.sbp.com.br/fileadmin/user_upload/nimacaoPrematuroMenor34semanas26jan2016.pdf

Tomazoni A, Rocha PK, Kusahara DM, Souza AIJ, Macedo TR. Evaluation of the safety culture of the patient in neonatology units from the perspective of the multiprofessional team. Texto Contexto Enferm. 2015; 24(1):161-9. doi: http://dx.doi.org/10.1590/0104-07072015000490014

Panagos PG, Pearlman SA. Creating a Highly Reliable Neonatal Intensive Care Unit Through Safer Systems of Care. Clin Perinatol. 2017; 44(3):645-62. doi: dx.doi.org/10.1016/j.clp.2017.05.006

Manja V, Saugstad OD, Lakshminrusimha S. Oxygen saturation targets in preterm infants and outcomes at 18–24 months: a systematic review. Pediatrics. 2017; 39(1):e20161609. doi: http://dx.doi.org/10.1542/peds.2016-1609

Marta CB, Junior HCS, Costa DJ, Martins GM, Silva RC, Pereira LS. The nursing team before alarm triggering in the neonatal intensive care unit. Rev Pesqui Cuid Fundam Online. 2016; 8(3):4773-9. doi: http://dx.doi.org/10.9789/2175-5361.2016.v8i3.4773-4779

Badurdeen S, Roberts C, Blank D, Miller S, Stojanovska V, Davis P, et al. Haemodynamic instability and brain injury in neonates exposed to hypoxia–ischaemia. Brain Sci. 2019; 9(3):49. doi: http://dx.doi.org/10.3390/brainsci9030049

Stenson BJ. Oxygen saturation targets for extremely preterm infants after the NeOProM trials. Neonatology. 2016; 109(4):352-8. doi: http://dx.doi.org/10.1159/000444913.

Paul M. Oxygen administration to preterm neonates in the delivery room: Minimizing oxidative stress. Adv Neonatal Care. 2015; 15(2):94-103. doi: http://dx.doi.org/10.1097/ANC.0000000000000147

Luna A, Branco L, Beleza L. Nursing workload in neonatal ICU: application of the nursing activities score tool. Rev Pesqui Cuid Fundam Online. 2017; 9(1):144-51. doi: http://dx.doi.org/10.9789/2175-5361.2017.v9i1.144-151

Published
2019-09-10
Section
Research Article