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ABSTRACT - Monitoring the spatial variability of soil attributes is an important tool in crop management. Multivariate statistical

methods and geostatistics were jointly applied to evaluate the infl uence of diff erent attributes on spatial variability in the soil. The aim

of this research was to apply multivariate principal component analysis to map the spatial variability of the soil in an area subjected to

diff erent methods of conservation management and identify the most relevant physical and chemical attributes. Disturbed and undisturbed

soil samples were collected and georeferenced at 99 diff erent points in the study area at depths of 0.00 - 0.10 m and 0.10 - 0.20 m to

measure the physical and chemical attributes of the soil; multivariate principal component analysis (PC) was then applied to the data.

Geostatistics was applied to the PCs showing greater explanatory capacity, evaluating spatial dependence, and generating maps of

spatial variability. The variance in the soil attributes was explained by the fi rst eight PCs. Soil density, particle density and pH had the

greatest infl uence on the spatial variability of the soil since they showed the highest correlation with the PC with the greatest explanatory

power. The PCs that correlated with at least two of the soil attributes showed moderate (PC1 and PC6) and strong (PC2, PC4 and PC5)

spatial dependence. The generated maps helped identify the joint infl uence of the variability of the most relevant attributes, making it

possible to characterise regions under diff erent methods of conservation management.
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INTRODUCTION

Con servation management, such as organic
cultivation and agroforestry systems (AFSs), contribute
to environmental sustainability, making the soil more
resistant to erosion and less dependent on external inputs,
and allowing the loss of organic matter, water and the
physical and chemical quality of the soil to be controlled
(FORTINI; BRAGA; FREITAS, 2019). According to data
from the Brazilian Ministry of Agriculture, Livestock and
Supply (MAPA), organic production in Brazil occupies
an area of approximately 1.5 million hectares, with more
than 26,800 units registered for this type of production
(BRASIL, 2022).

Given the increasing pressure for public
policies that encourage sustainable agriculture, and the
expansion of the consumer market for organic products
(MULLER et al., 2017; SAZVAR; RAHAMANI;
GOVINDAN, 2018), improving and assessing the
impact of management systems that are based on the
reuse of organic waste is important for guaranteeing the
environmental and economic viability of these methods.
In this scenario, monitoring the attributes of soil quality
is an important indicator of the productive potential
and restrictions of the type of management employed
(CHAVEIRO et al., 2022; MESFIN; HAILESELASSIE,
2022; PAGE; DANG; DALAL, 2020).

Techniques associated with geostatistics have been
applied to evaluate the spatial variability of soil attributes,
identify regions of low productivity in agricultural
areas, characterise soil quality, and enable diff erent
methods of crop management (TORIYAMA, 2018;
ZERAATPISHEH et al., 2022; ZHANG et al., 2022).
In soils under conservation management, variability in
the physical and chemical attributes of the soil can be
infl uenced by a minimum of tillage in the planting rows,
fertilisation using diff erent products of organic origin, or
by using organic matter from crop residue as ground cover
(DALCHIAVON et al., 2012; VOLTR et al., 2021).

Individual soil attributes are normally evaluated
using univariate analysis together with geostatistics to
determine spatial dependence and generate maps of
the variability of the attributes (GELAIN et al., 2021;
GORAI; BHUSHAN; KUMAR, 2013). Although well-
established, this type of analysis tends to be limited
when interpreting how these attributes influence the
soil when evaluated together.

Multivariate statistical methods have been
applied as an alternative way of evaluating spatial
variability based on the interaction of soil attributes
(BELKHIRI; NARANY, 2015; BUSS et al., 2019;
MARTINS et al., 2020). Burak, Passos and Andrade

(2012), used geostatistics and principal component
analysis to verify that attributes related to acid-base reactions
had the most influence on the spatial variability of
a soil cultivated with coffee, since these correlated
with the principal component having the greatest
explanatory power. Principal component analysis was
also used by Trevisan et al. (2017) to evaluate the
spatial variability of the physical properties of the soil
and of rice production under different cover crops,
making it possible to reduce the analysed variables to
three principal components which were then used to
generate management zones.

The aim of this research was to use multivariate
principal component analysis to map the spatial
variability of the soil in an area subjected to different
methods of conservation management, and identify the
physical and chemical attributes of the soil that most
influenced this variability.

MATERIAL AND METHODS

Characterisation of the experimental area

The experiment was conducted in an area of
agroecological production located at the Federal Rural
University of Rio de Janeiro (22°46’24” S and 43° 42’
08” W, altitude 33 m). The area has a history of fourteen
years organic cultivation, using fertiliser made exclusively
from organic waste, with a minimum tillage system of soil
preparation and crop management, including two annual
mechanised operations (rotary hoe and tiller).

The area is approximately 0.44 ha in size (Figure 1)
and was cultivated using agroecological systems for
the production of various vegetables, including lettuce
(Lactuca sativa. L), cabbage (Brassica oleracea),
mustard (Sinapsis alba), chicory (Cichorium endívia),
endive (Cichorium intybus), rocket (Eruca sativa), turnip
(Brassica rapa L.), and radish (Raphanus sativus. L.).
Beans (Phaseolus Vulgaris) were also grown in the area,
and fruit trees, such as the banana (Musa acuminata)
and passion fruit (Passiflora edulis), in addition to a
region under an agroforestry system - AFS (producing
gliricidia for animal feed, using leaves and crushed
branches as top dressing).

The soil in the experimental area was classified
as a typical Eutrophic Tb Haplic Planosol, formed
geologically in the Paraíba do Sul complex from
sedimentary parent material. The soil is classified
as non-stony and non-rocky. The local relief is flat,
imperfectly drained, with no apparent erosion. The
primary vegetation is subtropical sub-deciduous forest,
with the soil currently used for cultivating oil crops.
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Figure 1 - Location of the study area characterised by one region with the organic cultivation of various crops (vegetables, fruit and beans)
and one region under an agroforestry system

Georeferencing and analysis of the soil samples

The soil samples were acquired at a regular spacing
of 7.0 m. The points were georeferenced using a Magellan
Promak 2 GPS receiver, with a precision of ±5mm +5ppm,
coupled to an Ashtech Proantenna external antenna. Five
individual samples were collected from each sampling
point to form a single composite sample.

Disturbed and undisturbed soil samples were
collected at depths of 0.00 - 0.10 m and 0.10 - 0.20 m. To
analyse the physical attributes of the soil, 99 undisturbed
samples were collected at a depth of 0.00 - 0.20 m using
a Kopeck ring. To analyse the chemical attributes, 99
disturbed samples were collected in the 0.00 - 0.10 m
layer, and 99 disturbed samples in the 0.10 - 0.20 m layer.

As per the methodology proposed by Teixeira
et al. (2017), the undisturbed soil samples were taken
to the laboratory, oven-dried at 105 ºC and weighed to
determine the bulk density (Ds) using the volumetric
ring method. To determine particle density (Dp) using
the volumetric flask method, the samples were crushed
and passed through a 0.2 mm sieve to obtain the ADFE.
The total pore volume (TPV) was determined as the
ratio of bulk density (Ds) to particle density (Dp).

The disturbed soil samples were air-dried (ADFE),
crushed, passed through a 2 mm sieve, and oven-dried
at 105 °C to give oven-dried fi ne earth (ODFE). The
following chemical analyses were carried out: pH at a
soil to water ratio of 1:2.5; exchangeable calcium (Ca2+),
magnesium (Mg2+), potassium (K+), sodium (Na+) and
aluminium (Al3+); available phosphorus (P); extractable
hydrogen + aluminium (H+Al) (potential acidity).

Data analysis

Descriptive data analysis and principal component
analysis were carried out using the PAST 4.03 Software.
The descriptive analysis was carried out on the data
collected in the 0.0 - 0.10 m and 0.10 - 0.20 m layers,
analysing the maximum, minimum, and mean values, and
the median, coeffi  cient of variation, kurtosis, asymmetry
and normality.

As described in Silva et al. (2010), the coeffi  cient
of variation (CV) was analysed considering low values as
CV < 12%, medium values as 12% < CV < 60% and high
values as CV > 60%. Skewness or degree of departure
from the symmetry of the distribution (Cs) was evaluated
observing that if Cs > 0, the distribution is skewed to the
right; if Cs < 0, the distribution is skewed to the left; and
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if Cs = 0, the distribution is symmetric. Kurtosis (Ck), the
degree of fl attening of a normal distribution, was classifi ed
as mesokurtic (Ck = 0), platykurtic (Ck < 0), or leptokurtic
(Ck > 0). Data normality was assessed using the Shapiro-
Wilk test to ascertain whether the distribution was similar
to a normal distribution.

Following the descriptive analysis, the data were
normalised as described in Machado et al. (2020) to
remove the effect of the different units of the variables.
Multivariate principal component analysis (PCA)
was carried out on the normalised data with the aim
of explaining the correlation between the observable
variables, and reduce the number of variables needed
to describe the observed variance, the result of the
spatialisation of the samples.

The percentage variance explained by the principal
components (PCs) was evaluated to determine the
number of principal components necessary to explain the
variance in the data as a function of the spatialisation of
the soil samples. The PCs that presented an accumulated
explained percentage greater than 70% were selected as
representative of the variance generated by the physical
and chemical attributes (MACHADO et al., 2020).

After analysing the explained percentage, a
correlation analysis was carried out between the original
variables (soil attributes) and the most representative PCs.
The PCs that presented the highest correlation coeffi  cients
with at least two soil attributes were selected for analysing
the spatial variability using geostatistics.

The semivariograms were analysed, and the
maps of spatial variability in the soil generated using

the WGS+ 10 Software. The semivariograms associated
with each PC were selected based on a performance
evaluation of the following parameters: Nugget eff ect (Co),
sill (Co+C), range (Ao), correlation coeffi  cient (r²), residual
sum of squares (RSS), and spatial dependence index (SDI).

The spatial dependence index was classifi ed as per
Cambardella et al. (1994): strong spatial dependence ≥ 75%,
moderate spatial dependence between 25% and 75%, and
weak spatial dependence ≤ 25%.

After selecting the semivariograms, the data
were interpolated using ordinary kriging to map the
spatial variability of the PCs associated with the soil
attributes collected at a depth of 0 - 0.20 m.

RESULTS AND DISCUSSION

A descriptive analysis of the data (Table 1)
showed that the central tendency (mean and median)
was similar for 73.7% of the attributes, indicating a
distribution close to a central value. The attributes Ds,
Dp and pH at a depth of 0 - 0.10 m had CV values of
less than 12%, the variation being classified as low.
The other soil attributes had a CV between 12% and 60%,
and are therefore considered to have medium variation.
At a depth of 0.10 - 0.20 m, only pH had a low CV
value. The other attributes under evaluation were
considered to have medium variation. The assessment
of normality using the Shapiro-Wilk test showed that
all the attributes had a p-value greater than 0.05, and
were not considered to have a normal distribution.

Var. Und. Min. Max. Mean Med. CV(%) CK ASM SW
0 - 0.10 m (99 samples evaluated)

Ds Mg.m-3 1.10 1.86 1.55 1.57 8.69 1.38 -0.86 0.95
Dp Mg.m-3 1.69 2.63 2.42 2.44 4.30 24.26 -3.47 0.73
TPV % 23.00 52.0 35.94 35.00 14.23 0.88 0.57 0.97
pH H₂O 4.39 7.30 6.08 6.18 7.75 2.73 -1.10 0.93
Ca2+ cmolc.kg-1 1.60 3.00 2.17 2.10 14.63 -0.08 0.82 0.92
Mg2+ cmolc.kg-1 0.20 2.50 1.37 1.40 41.39 -0.78 -0.31 0.96
Al3+ cmolc.kg-1 0.10 0.40 0.24 0.20 24.31 -0.09 0.71 0.73
H+AL cmolc.kg-1 1.00 4.20 3.41 3.55 14.01 5.88 -1.74 0.88
P Mg.kg-1 7.79 39.87 25.87 28.27 52.42 3.75 -0.40 0.95
Na+ cmolc.kg-1 0.01 0.02 0.01 0.01 33.31 -0.98 1.97 0.43
K+ cmolc.kg-1 0.01 0.12 0.04 0.03 31.30 1.93 1.39 0.88

Table 1 - Descriptive analysis of the physical and chemical attributes of the soil in the 0-0.10 m and 0.10-0.20 m layers
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Still on data distribution, at a depth of 0 - 0.10 m,
55% of the attributes were skewed to the left (Ds, Dp,
pH, Mg, H+Al and P) with the remaining 45% skewed
to the right (TPV, Ca2+, Al3+, Na2+ and K+). At a depth
of 0.10 - 0.20, only pH was skewed to the left, the rest
of the attributes being skewed to the right. This shows
that at a depth of 0 - 0.10 m, the greatest concentration
of data had values greater than the mean, stretching the
distribution to the left, while at a depth of 0.10 - 0.20 m
there is a concentration of data with values below the
mean, stretching the distribution to the right. Most of
the data presented a leptokurtic distribution.

The mean values for the chemical attributes of the
soil were classifi ed as per the Liming and Fertilisation
Manual of the state of Rio de Janeiro (FREIRE et al., 2013).
The pH was considered moderately high, the levels of
calcium (Ca2+) were medium, magnesium (Mg2+) was
considered good, aluminium (Al3+), phosphorus (P) and
potassium (K+) were considered low. Exchangeable
acidity (H + Al) at 0.00 - 0.10 m was considered medium,
while at 0.10 - 0.20 m it was considered low.

When principal component analysis was applied to
the soil attributes, the fi rst eight principal components had
an accumulated explained percentage (EPac) of 74.27%,
and were considered representative for explaining the
total variability of the data (EPac > 70%).

As shown in Table 2, PC1 alone explained 14.99%
of the total variability of the data, the soil attributes that
showed the highest correlations with this PC being Ds, Dp
and pH in the 0 - 0.10 m layer, and pH in the 0.10 - 0.20 m
layer. PC2, which explained 13.32% of the total variability,
had the highest correlation with Ca2+ in the 0 - 0.10 m and
0.10 - 0.20 m layer, and Mg2+ in the 0 - 0.10 m and the
0.10 - 0.20 m layers. PC4 (EP% = 9.03%) was correlated
with Dp, TPV and pH in the 0.10 - 0.20 m layer. Finally,

0.10 – 0.20 m (99 samples evaluated)
pH H₂O 4.70 6.90 6.07 6.15 6.73 0.50 -0.70 0.97
Ca2+ cmolc.kg-1 0.80 2.60 1.58 1.60 22.11 0.14 0.03 0.98
Mg2+ cmolc.kg-1 0.40 3.40 1.52 1.40 35.29 2.05 1.11 0.93
Al3+ cmolc.kg-1 0.30 0.60 0.40 0.40 17.58 -0.36 0.21 0.82
H+AL cmolc.kg-1 1.48 3.00 2.07 1.98 20.21 -0.84 0.49 0.93
P Mg.kg-1 7.56 39.87 23.46 23.72 35.35 -1.08 0.04 0.97
Na+ cmolc.kg-1 0.01 0.03 0.01 0.01 34.57 4.28 2.23 0.46
K+ cmolc.kg-1 0.00 0.07 0.02 0.02 53.15 4.06 1.59 0.82

Variables (Var), minimum (Min), maximum (Max), median (Med), coeffi  cient of variation (CV%), asymmetry (ASM), kurtosis (CK), Shapiro-Wilk
(SW). *Signifi cant at 5% by T-test for a normal distribution. Bulk density (Ds), Particle density (Dp), Total pore volume (TPV), Hydrogen potential
(pH), calcium (Ca2+), magnesium (Mg2+), aluminium (Al3+), potential acidity (H+Al), phosphorus (P), sodium (Na+), and potassium (K+)

Continuation Table 1

PC5 (EP% = 7.80%) was correlated with H + Al and P in
the 0.10 - 0.20 m layer, while PC6 (EP% = 6.92%) was
correlated with potential acidity (H + Al) in the 0 - 0.10
m layer  and Na+ in the 0.10 - 0.20 layer. PC3, PC7 and
PC8 presented fewer than two attributes associated with
the highest correlation coeffi  cient, and were disregarded
when analysing spatial variability.

Soil attributes that showed a correlation with a
specifi c principal component may have been infl uenced
by the same aspects related to management in the diff erent
regions of the experimental area. Analysing the attributes
correlated with PC1, the component with the greatest
explanatory power shows the relationship between Ds
and TPV to be inversely proportional, so that the higher
the bulk density, the smaller the total pore volume. pH,
also correlated with PC1, infl uences the trend towards
soil acidifi cation, especially in regions of high rainfall. As
such, it contributes to the basic character of the exchange
complex and favours an increase in the Al3+ and  H+

cations, which increase the acidic nature of the soil. The
base cations (Ca2+ and Mg2+) associated with acidity, when
present in low levels, show a strong correlation in PC2.

In order to assess the spatial variability
generated jointly by at least two of the soil attributes,
of the eight representative PCs, those with at least two
soil attributes with the highest associated correlation
power (PC1, PC2, PC4, PC5 and PC6) were selected
for the spatial dependence analysis.

The models for each PC were selected based on the
coeffi  cient of determination and the spatial dependence
index (Table 3). Spatial dependence for PC2, PC4 and PC5
was classifi ed as strong, while for PC1 and PC6, spatial
dependence was classifi ed as moderate. The classifi cations
show that the principal components are infl uenced by the
intrinsic properties of the soil, which are correlated.
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PC PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Autov 2.85 2.53 1.93 1.72 1.48 1.31 1.22 1.07

EP (%) 14.99 13.32 10.15 9.03 7.80 6.92 6.43 5.63

EPAc (%) 14.99 28.31 38.46 47.49 55.29 62.21 68.64 74.27

Correlation of the attributes in the 0.00 - 0.10 m layer

Ds 0.88* 0.05 0.09 -0.22 -0.20 0.18 0.15 -0.02

Dp 0.46 0.17 0.03 0.51* 0.16 0.01 0.44 -0.05

TPV -0.71* 0.03 -0.08 0.51* 0.31 -0.20 0.07 -0.01

pH 0.60* -0.10 0.39 0.44 0.18 -0.03 -0.12 0.19

Ca2+ -0.06 0.79* 0.03 -0.08 0.14 0.02 -0.34 -0.03

Mg2+ 0.07 -0.81* 0.06 0.05 -0.20 -0.21 0.23 0.12

Al3+ -0.45 -0.30 0.27 -0.10 -0.12 0.40 0.13 0.16

H+AL -0.04 0.19 0.21 -0.05 -0.12 0.53* -0.20 -0.55*

P 0.08 0.21 0.31 -0.32 0.33 -0.07 0.56* -0.25

Na+ 0.07 0.22 0.67* -0.37 0.19 0.07 -0.02 0.34

K+ 0.20 -0.06 -0.08 -0.42 0.48 -0.04 0.16 0.17

Correlation of the attributes in the 0.10 - 0.20 m layer

pH 0.53* 0.11 0.17 0.58* 0.11 0.06 -0.28 0.06

Ca2+ -0.04 0.57* -0.30 0.12 -0.26 0.15 0.17 0.43

Mg2+ -0.02 -0.64* 0.41 -0.06 0.18 -0.09 -0.40 -0.12

Al3+ -0.49 -0.13 0.16 0.27 0.03 0.54 0.23 0.14

H+AL -0.08 0.20 0.16 -0.19 -0.54* -0.39 -0.15 0.22

P -0.11 0.04 -0.37 -0.17 0.62* -0.08 -0.18 0.10

Na+ -0.23 0.33 0.37 0.13 -0.16 -0.50* 0.21 -0.38

K+ -0.38 0.25 0.70* 0.10 0.06 -0.07 -0.01 0.21

Table 2 - Explained percentage of variance using principal components (PC), and correlation between the original variables and the
principal components

Principal components (PC), Explained percentage (EP), Accumulated percentage (EPac), Bulk density (Ds), Particle density (DP), Total pore volume
(TPV), Hydrogen potential (pH), calcium (Ca2+), magnesium (Mg2+), aluminium (Al3+), potential acidity (H+Al), sodium (Na+), potassium (K+), and
phosphorus (P). Correlation greater than ± 0.50 (*)

Table 3 - Parameters of the semivariogram generated from the principal components associated with the attributes of the physical and
chemical analysis of the soil in the 0-0.20 m layer

Nugget Eff ect (Co), Sill (Co+C), Range (Ao), Correlation Coeffi  cient (R²), Residual Sum of Squares (RSS), Spatial Dependence Index (SDI)

Variable Model Co Co+C Ao(m) R² RSS SDI Class
PC1 Spherical 1.738 3.691 136.30 0.79 0.299 53% Moderate
PC2 Exponential 0.346 3.416 21.50 0.94 0.268 90% Strong
PC4 Spherical 0.097 1.80 9.90 0.16 0.121 95% Strong
PC5 Gaussian 0.155 1.515 6.50 0.79 0.038 90% Strong
PC6 Exponential 0.606 1.371 17.10 0.81 0.054 56% Moderate
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Despite the SDI being classifi ed as strong, the
low coeffi  cient of determination (R² = 0.157) when
modelling PC4, shows that even the best fit model
(spherical) had limitations for these data, which
suggests that the maps of spatial variability for these
parameters may not be representative.

Another aspect to be considered is the range of
the semivariogram, which varies depending on the spatial
interaction of the soil processes that aff ect each property
based on the sampling scale being used. As this parameter
represents the maximum distance between samples
for determining soil properties with a good degree of
representativeness (LONDERO et al., 2020), it was found
that the ranges generated by the models were generally
greater than 7.0 m (the distance used for each sampling point),
showing that the distance between the collected samples
was suffi  cient for assessing spatial dependence. PC5
had a range of less than 7.0 m, which indicates that for
assessing  H + Al  and P  in  the  0.10  -  0.20  m layer,  the
distance between the sampling points should be reduced.

Parameters associated with the semivariograms, such
as R² and range, can be better adjusted based on an analysis
of the spatial variability in diff erent directions. In this case,
an analysis taking into account the anisotropic nature of the
data can improve the characteristics of the semivariogram
parameters (GUEDES et al., 2008; PARK; AHN; LEE, 2013).

The map of spatial variability (Figure 2A) shows
that the AFS (to the south) and the fruit-growing area
(centre-south) had the highest PC1 values compared to the
area of organic vegetables and legumes (to the east). It

was therefore concluded that the soil attributes Ds, TPV
and pH, which are better correlated with this component,
had a greater infl uence on the variability of the soil in these
areas. As the root systems of the crops in the AFS and fruit-
growing areas are deeper, the soil porosity tends to increase,
contributing to the greater infl uence of these parameters
(LENCI et al., 2018). Diff erences in these attributes between
areas become more obvious when analysing the spatial
variability based on two classes (Figure 2B).

The map of spatial variability of the other
attributes generated from PC2 (Figure 3A), which is
associated with Ca2+ and  Mg2+, showed an obvious
diff erence between the AFS (to the south) and the area
of organic cultivation (centre-east), particularly the
fruit-growing area (centre-south). The map generated
by PC5 (Figure 3B) showed lower values related to the
area of organic fruit cultivation, indicating that the soil
attributes associated with this component (H + AL and
P in the 0.10 - 0.20 m layer) has less infl uence in this
region. Finally, the variability map generated from PC6
(Figure 3C), and which is associated with the variability
of H + AL at a depth of 0.00 - 0.10 m and Na+ at a
depth of 0.10 - 0, 20 m, showed that these attributes had a
diff erent eff ect on the area of organic vegetable cultivation.

The analysis of spatial variability based on the
principal components enabled at least two soil attributes
to be assessed at one time, defi ning the most important
physical and chemical attributes of the soil, mapping
spatial variability, and analysing the joint infl uence of
these attributes in regions under diff erent methods of

Figure 2 - Map of spatial variability for PC1 associated with the soil attributes Ds, Dp and pH in the 0 - 0.10 m layer, and pH in
the 0.10 - 0.20 m layer, in an area under organic cultivation and an agroforestry system. (A) zones of spatial variability divided
into four classes; (B) zones of spatial variability divided into two classes
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Figure 3 - Map of spatial variability in an area under organic cultivation and an agroforestry system: (A) map for PC2 associated
with the soil attributes Ca2+ and Mg2+ in the 0 - 0.10 m and in the 0.10 - 0.20 m layer; (B) map for PC5 associated with the soil
attributes H + AL and P in the 0.10 - 0.20 m layer; and (C) map for PC6 associated with the soil attributes H+Al in the 0.10 - 0.20 m layer
and Na+ in the 0.10 - 0.20 m layer

conservation management. The maps of spatial variability
of the principal components can be used as an aid to
manage the area under evaluation, and are especially
important in helping to defi ne strategies for the localized
correction of soil fertility and methods of soil preparation
based on the associated attributes.

CONCLUSIONS

1. The spatial variability of the soil attributes could be
explained by eight principal components, which presented

an accumulated explained percentage of 74.23%, with fi ve
principal components (PC1, PC2, PC4, PC5 and PC6)
showing a correlation with at least two of the soil attributes,
demonstrating that multivariate analysis allows for a broad
and interactive characterisation of the infl uence of the
variability of the soil attributes;

2. By evaluating the correlation with the principal
components that showed the highest explanatory
percentage, it was possible to identify the soil attributes
that had the most infl uence on soil variability as a
function of the diff erent methods of conservation
management, showing that this is an effi  cient way
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of indicating which soil attributes have the greatest
infl uence on its variability;

3. The maps generated from the principal components
made it possible to characterise the spatial variability
of the soil when infl uenced by more than one attribute
at the same time, thereby characterising the diff erent
methods of conservation management.
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