Decifrando a dinâmica dos preços: Análise bibliométrica das tendências de pesquisa no mercado financeiro
DOI:
https://doi.org/10.36517/contextus.2025.95480Palavras-chave:
dinâmica de preços; mercados financeiros; bibliometria; análise de base; agenda de pesquisa.Resumo
Contextualização: A dinâmica do comportamento dos preços financeiros se consolidou como um tema central na literatura econômica, especialmente diante da volatilidade crescente dos mercados, avanços tecnológicos e novas interdependências globais. A compreensão dos fatores que influenciam essa dinâmica é essencial, principalmente em um cenário caracterizado por incertezas e transformações digitais constantes.
Objetivo: O estudo visa investigar a evolução da literatura científica sobre a dinâmica dos preços financeiros, abrangendo o período de 1970 a 2024. O foco está em mapear a trajetória da pesquisa, identificar suas bases teóricas e sociais, e delinear as tendências emergentes que moldam a agenda de pesquisa atual e futura na área.
Método: A pesquisa adotou uma abordagem bibliométrica, analisando 3.648 publicações extraídas das bases de dados Scopus e Web of Science. O processo de análise foi dividido em três etapas: (i) evolução temporal da produção científica, (ii) análise da base conceitual e social, por meio de redes de co-ocorrência, mapa temático e colaboração entre autores, e (iii) identificação de tendências emergentes, com ênfase em treze áreas de estudo.
Resultados: A literatura sobre dinâmica de preços mostrou crescimento consistente, com destaque para os períodos de crise econômica e inovação tecnológica. A produção científica revelou uma crescente integração entre abordagens micro e macroeconômicas, com foco em modelos empíricos.
Conclusões: As tendências emergentes indicam que a integração de tecnologias avançadas e práticas sustentáveis terá um impacto significativo na modelagem dos preços e na tomada de decisões de investimento. A pesquisa também aponta para novas direções, como a consideração de variáveis ambientais e a necessidade de modelos híbridos e adaptativos para lidar com a volatilidade e complexidade dos mercados financeiros.
Downloads
Referências
Agnello, L., Castro, V., Hammoudeh, S., & Sousa, R. (2020). Global factors, uncertainty, weather conditions and energy prices: On the drivers of the duration of commodity price cycle phases. Energy Economics, 90. https://doi.org/10.1016/j.eneco.2020.104862
Almutairi, H., Pierru, A., & Smith, J. (2024). Managing the oil market under misinformation: A reasonable quest? Journal of Commodity Markets, 34. https://doi.org/10.1016/j.jcomm.2024.100403
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Arslan, S. (2024). Bitcoin Price Prediction Using Sentiment Analysis and Empirical Mode Decomposition. Computational Economics, 65, 2227–2248. https://doi.org/10.1007/s10614-024-10588-3
Ashena, M., Khezri, H. L., & Shahpari, G. (2024). Investigation into the dynamic relationships between global economic uncertainty and price volatilities of commodities, raw materials, and energy. Applied Economic Analysis, 32. https://doi.org/10.1108/aea-06-2023-0207
Ashwin, J. (2024). Financial news media and volatility: Is there more to newspapers than news? Journal of Financial Markets, 69. https://doi.org/10.1016/j.finmar.2024.100896
Asproudis, E., Gedikli, Ç., Talavera, O., & Yılmaz, O. (2024). Returns to solar panels in the housing market: A meta learner approach. Energy Economics, 137. https://doi.org/10.1016/j.eneco.2024.107768
Bachelier, L. (1900). Théorie de la spéculation. Annales scientifiques de l'École Normale Supérieure, 17, 21–86. https://www.numdam.org/item?id=ASENS_1900_3_17__21_0
Baker, S. R., Bloom, N., & Davis, S. J. (2016), Measuring Economic Policy Uncertainty. The Quarterly Journal of Economics, 131(4), 1593–1636. https://doi.org/10.1093/qje/qjw024
Batten, J. A., Mo, D., & Pourkhanali, A. (2024). Can inflation predict energy price volatility? Energy Economics, 129, https://doi.org/10.1016/j.eneco.2023.107158
Beckmann, J., Geldner, T., & Wuestenfeld, J. (2024). The relevance of media sentiment for small and large scale bitcoin investors. Journal of International Financial Markets, Institutions and Money, 92. https://doi.org/10.1016/j.intfin.2024.101963
Berry, C., & Börjesson, M. (2024). Income and fuel price elasticities of car use on micro panel data. Energy Economics, 135. https://doi.org/10.1016/j.eneco.2024.107661
Bhattacharya, P. S. (2024). Pass‐through to export prices: Evidence from Australia. The World Economy, 47, 2574–2607. https://doi.org/10.1111/twec.13554
Boddin, D., & Stähler, F. (2024). Import tariffs and transport prices. Canadian Journal of Economics, 24, 430–458. https://doi.org/10.1111/caje.12708
Brock, W. A., & Hommes, C. H. (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model. Journal of Economic Dynamics and Control, 22(8–9), 1235-1274. https://doi.org/10.1016/S0165-1889(98)00011-6
Buccheri, G., Grassi, S., & Vocalelli, G. (2024). Estimating Risk in Illiquid Markets: A Model of Market Friction with Stochastic Volatility. Journal of Financial Econometrics, 22. https://doi.org/10.1093/jjfinec/nbad006
Bunek, G. D., & Janzen, J. P. (2024). Does public information facilitate price consensus? Characterizing USDA announcement effects using realized volatility. Journal of Commodity Markets, 33. https://doi.org/10.1016/j.jcomm.2024.100382
Campos-Martins, S., & Hendry, D. F. (2024). Common volatility shocks driven by the global carbon transition. Journal of Econometrics, 239. https://doi.org/10.1016/j.jeconom.2023.05.008
Castro, C., & Jimenez-Rodriguez, R. (2024). The impact of oil shocks on the stock market. Global Finance Journal, 60. https://doi.org/10.1016/j.gfj.2024.100967
Chen, K., & Yang, J. (2024). Price dynamics and volatility jumps in bitcoin options. Financial Innovation, 10(132), 1-29. https://doi.org/10.1186/s40854-024-00653-z
Chuliá, H., Klein, T., Mendoza, J. A. M., & Uribe, J. M. (2024). Vulnerability of European electricity markets: A quantile connectedness approach. Energy Policy, 184. https://doi.org/10.1016/j.enpol.2023.113862
Ciaschini, C., & Recchioni, M. C. (2024). A market sentiment indicator, behaviourally grounded, for the analysis and forecast of volatility and bubbles. Review of Behavioral Finance, 16. https://doi.org/10.1108/rbf-07-2021-0128
Conlon, T., Corbet, S., & Hou, Y. (2024). Navigating the green transition: the influence of energy volatility on green and sustainable ETFs. Applied Economics Letters. https://doi.org/10.1080/13504851.2024.2337323
Conlon, T., Corbet, S., Hou, Y., Hu, Y., & Oxley, L. (2024). Seeking a shock haven: Hedging extreme upward oil price changes. International Review of Financial Analysis, 94. https://doi.org/10.1016/j.irfa.2024.103245
Cuaresma, J. C., Fortin, I., Hlouskova, J., & Obersteiner, M. (2024). Regime‐dependent commodity price dynamics: A predictive analysis. Journal of Forecasting, 43. https://doi.org/10.1002/for.3152
Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor Psychology and Security Market Under- and Overreactions. The Journal of Finance, 6. https://doi.org/10.1111/0022-1082.00077
De Lipsis, V., & Agnolucci, P. (2024). Climate change and the US wheat commodity market. Journal of Economic Dynamics and Control, 161. https://doi.org/10.1016/j.jedc.2024.104823
Ding, S., Wang, A., Cui, T., Du, M., & Zhou, X. (2024). Commodity market stability and sustainable development: The effect of public health policies. Research in International Business and Finance, 70. https://doi.org/10.1016/j.ribaf.2024.102386
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Durisin, B., & Puzone, F. (2009). Maturation of Corporate Governance Research, 1993–2007: An Assessment. Corporate Governance: An International Review, 17(3), 266-291. https://doi.org/10.1111/j.1467-8683.2009.00739.x
Engle, R. F., & Russell, J. R. (1998). Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica, 66(5), 1127-1162. https://doi.org/10.2307/2999632
Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25, 383-417.
Fama, E., & French, K. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3-56. https://doi.org/10.1016/0304-405X(93)90023-5
Fama, E., & French, K. (1996). Multifactor Explanations of Asset Pricing Anomalies. The Journal of Finance, 51. https://doi.org/10.1111/j.1540-6261.1996.tb05202.x
Fama, E., & French, K. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, 1-22. https://doi.org/10.1016/j.jfineco.2014.10.010
Fan, G., Zhang, R., Cao, C., Peng, L., Yeh, Y., & Hong, W. (2024). The volatility mechanism and intelligent fusion forecast of new energy stock prices. Financial Innovation, 10, 1-37. https://doi.org/10.1186/s40854-024-00621-7
Ferrero, A., Harrison, R., & Nelson, B. (2024). House Price Dynamics, Optimal LTV Limits and the Liquidity Trap. The Review of Economic Studies, 91, 940–971, https://doi.org/10.1093/restud/rdad040
Filser, L., Silva, F., & Oliveira, O. (2017). State of research and future research tendencies in lean healthcare: A bibliometric analysis. Scientometrics, 112(2), 799-816. https://doi.org/10.1007/s1119 2-017-2409-8
Findenegg, J., & Wessel, J. (2024). Pump or pedal? The impact of fuel prices on cycling in Germany. Transportation Research Part A: Policy and Practice, 186. https://doi.org/10.1016/j.tra.2024.104146
Gaio, L. E., Stefanelli, N. O., Pimenta, T., Bonacim, C. A. G., & Gatsios, R. C. (2022). The impact of the Russia-Ukraine conflict on market efficiency: Evidence for the developed stock market. Finance Research Letters. https://doi.org/10.1016/j.frl.2022.103302
Geng, Q., Hao, X., & Wang, Y. (2024). Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint. Journal of Forecasting, 43, 309-325. https://doi.org/10.1002/for.3036
Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics,113(2), 363-398. https://doi.org/10.1016/S0304-4076(02)00207-5
Hatcher, M., & Hellmann, T. (2024). Communication, networks and asset price dynamics: a survey. Journal of Economic Interaction and Coordination, 19, 1–58. https://doi.org/10.1007/s11403-023-00395-8
Haugom, E., Lyócsa, Š., & Halousková, M. (2024). The tipping point of electricity price attention: When a problem becomes a problem. Economics Letters, 235. https://doi.org/10.1016/j.econlet.2024.111547
Haukvik, N., Cheraghali, H., & Molnár, P. (2024). The role of investors’ fear in crude oil volatility forecasting. Research in International Business and Finance, 70. https://doi.org/10.1016/j.ribaf.2024.102353
Hirshleifer, D. (2002). Investor Psychology and Asset Pricing. The Journal of Finance. https://doi.org/10.1111/0022-1082.00379
Huang, T., Kumar, A., Sacchetto, S., & Vergara‐Alert, C. (2024). Stock Comovement and Financial Flexibility. Journal of Financial and Quantitative Analysis, 59, 1141-1184 https://doi.org/10.1017/S0022109022001338
Hui, C-H., Lo, C-F., & Liu, C-H. (2024). Equity Price Dynamics under Shocks: In Distress or Short Squeeze. Risks, 2(1). https://doi.org/10.3390/risks12010001
Hussain, M., Bashir, U., & Rehman, R. U. (2024). Exchange Rate and Stock Prices Volatility Connectedness and Spillover during Pandemic Induced-Crises: Evidence from BRICS Countries. Asia-Pacific Financial Markets, 31, 183–203. https://doi.org/10.1007/s10690-023-09411-0
Karpoff, J. M. (1987). The Relation Between Price Changes and Trading Volume: A Survey. The Journal of Financial and Quantitative Analysis, 22(1), 109-126. https://doi.org/10.2307/2330874
Kumar, A., & Mallick, S. (2024). Oil price dynamics in times of uncertainty: Revisiting the role of demand and supply shocks. Energy Economics, 129. https://doi.org/10.1016/j.eneco.2023.107152
Lim, K., & Brooks, R. (2011). The evolution of stock market efficiency over time: A survey of the empirical literature. Journal of Economic Surveys, 25, 69–108. https://doi.org/10.1111/j.1467-6419.2009.00611.x
Lo, A. (2004). The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. J. Portf. Manage, 30, 15-29. https://ssrn.com/abstract=602222
Lo, A. (2017). Adaptive Markets: Financial Evolution at the Speed of Thought. 2. Ed. Princeton University Press.
Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1(1), 41–66. https://www.jstor.org/stable/2962126
Lyu, C., Do, H. X., Nepal, R., & Jamasb, T. (2024). Volatility spillovers and carbon price in the Nordic wholesale electricity markets. Energy Economics, 134. https://doi.org/10.1016/j.eneco.2024.107559
Maia, S., Benedicto, G., Prado, J., Robb, D., Bispo, O., & Brito, M. J., M. (2019). Mapping the literature on credit unions: Abibliometric investigation grounded in Scopus and Web of Science. Scientometrics, 120, 929-960. https://doi.org/10.1007/s11192-019-03165-1
Mandelbrot, B. B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394–419. https://www.jstor.org/stable/2351623
Massa, O. I., Karali, B., & Irwin, S. H. (2024). What do we know about the value and market impact of the US Department of Agriculture reports? Applied Economic Perspectives and Policy, 46. https://doi.org/10.1002/aepp.13409
Mohanty, S. K., & Mishra, S. (2021). Regulatory reform and market efficiency: The case of Indian agricultural commodity futures markets. Research in International Business and Finance. https://doi.org/10.1016/j.ribaf.2019.101145
Molavi, P., Tahbaz-salehi, A., & Vedolin, A. (2024). Model Complexity, Expectations, and Asset Prices. The Review of Economic Studies, 91, 2462–2507, https://doi.org/10.1093/restud/rdad073
Moraes, A. K., & Ceretta, P. S. (2023). Correlação conditional dinâmica, spillover de volatilidade e hedge para os preços do petróleo futuro e das ações das principais empresas do setor petrolífero. Estudos Econômicos, 53(2), 375-409. https://doi.org/10.1590/1980-53575325ampc
Moraes, A. K., & Ceretta, P. S. (2023). Directional volatility spillover between agricultural commodities, oil and financial indices. Organizações Rurais & Agroindustriais, 25. https://doi.org/10.48142/2520231903
Moraes, A. K., Ceretta, P. S., & Castro, L. G., Júnior. (2024). Análise Multifractal do Ibovespa: Dinâmicas de Preço, Volume Negociado e Eficiência de Mercado. Revista Evidenciação Contábil & Finanças, 12(1), 128–149. https://doi.org/10.22478/ufpb.2318-1001.2024v12n1.70209
Moraes, A. K., Ceretta, P. S., & Castro, L. G., Júnior. (2024). Explorando a assimetria na dependência entre os índices da B3: Uma análise de cópula. Revista Brasileira de Economia de Empresas, 24(1). https://doi.org/10.31501/rbee.v24i1.15137
Moraes, A. K., Furtini, A., Prado, J., Castro Junior, L., & Ceretta, P. (2024). Evolução da produção científica sobre o Mercado Eficiente: Estudo bibliométrico. Contextus – Revista Contemporânea de Economia e Gestão, 22, e92462. https://doi.org/10.19094/contextus.2024.92462
Moraes, A. K., Sobral, M., & Melo, A. (2021). An analysis of the hedge operation on hydrated ethanol in a plant in the State of Paraíba. Revista em Agronegócio e Meio Ambiente, 14, 893-906. https://doi.org/10.17765/2176-9168.2021v14n4e7850
Moraes, A. K., Sobral, M., & Melo, A. (2021). Market efficiency: application of the concept to the sucroalcooleiro sector of Paraíba. Rev. Adm. UFSM, 14, 138-161. https://doi.org/10.5902/1983465939181
Musampa, K., Eita, J. H., & Meniago, C. (2024). The Effects of Oil Price Volatility on South African Stock Market Returns. Economies, 12(1), 4. https://doi.org/10.3390/economies12010004
Narayan, P. K. (2024). Pricing behavior of clean energy stocks? Some trading implications. Energy Economics, 134. https://doi.org/10.1016/j.eneco.2024.107590
Patil, A. C., & Rastogi, S. (2019). Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature. Journal of Risk and Financial Management, 12. https://doi.org/10.3390/jrfm12020105
Peng, K., Hu, Z., & Robe, M. A. (2024). Maximum order size and market quality: Evidence from a natural experiment in commodity futures markets. The Journal of Futures Markets, 44, 803–825. https://doi.org/10.1002/fut.22494
Pinto-Ávalos, F., Bowe, M., & Hyde, S. (2024). Revisiting the pricing impact of commodity market spillovers on equity markets. Journal of Commodity Markets, 33. https://doi.org/10.1016/j.jcomm.2023.100369
Prado, J., Castro, A., Carvalho, F., Vieira, K., Machado, L., & Tonelli, D. (2016). Multivariate analysis of credit risk and bankruptcy research data: A bibliometric study involving different knowledge fields (1968–2014). Scientometrics, 106(3). https://doi.org/10.1007/s1119 2-015-1829-6
Rezitis, A. N., Andrikopoulos, P., & Daglis, T. (2024). Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes. The Journal of Futures Markets, 44. https://doi.org/10.1002/fut.22477
Robinson, Z. (2024). A macroeconomic viewpoint using a structural VAR analysis of silver price behaviour. Mineral Economics, 37, 15-23. https://doi.org/10.1007/s13563-023-00386-y
Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21(5), 449-469. https://doi.org/10.1016/S0140-9883(99)00020-1
Samuelson, P. A. (1965). Proof that Properly Anticipated Prices Fluctuate Randomly. Industrial Management Review, 6(2), 41–49.
Scheinkman, J. A., & Xiong, W. (2003). Overconfidence and Speculative Bubbles. Journal of Political Economy, 111(6). https://doi.org/10.1086/378531
Sharif, A., Aloui, C., & Yarovaya, L. (2020). Covid-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach, International Review of Financial Analysis. 70. https://doi.org/10.1016/j.irfa.2020.101496
Shiller, R. (2000). Irrational Exuberance. The American Journal of Economics and Sociology, 59(3), 537-540. https://www.jstor.org/stable/3487895
Silva, L. C. S., & Nobre, F. C. (2021). Produção científica sobre a influência dos vieses comportamentais no processo decisório: mapeamento comparativo entre Brasil, Estados Unidos da América e Europa. Revista Contribuciones a la Economía, 19(1), 53-84. https://www.eumed.net/es/revistas/contribuciones-economia/ce-enero21/processo-decisorio
Souza, R. M. F., Baia, M. W. M., Costa, I. C. M., Machado, R. S., Mendes, A. L. B., & Souto, M. V. (2017). Análise bibliométrica dos artigos científicos em finanças publicados na Revista de Administração de Empresas (RAE) da FGV/SP, no período de 2006 a 2016. Administração: Ensino e Pesquisa, 18(3), 489–517. https://doi.org/10.13058/raep.2017.v18n3.631
Takaishi, T. (2022). Time evolution of market efficiency and multifractality of the Japanese stock market. Journal of Risk and Financial Management. https://doi.org/10.3390/jrfm15010031
Thaler, R., & Sunstein, C. (2008). Nudge. Penguin Books.
Tian, Y., Wen, H., & Fu, S. (2024). Multi-step ahead prediction of carbon price movement using time-series privileged information. Expert Systems with Applications, 255. https://doi.org/10.1016/j.eswa.2024.124825
Todorov, K. (2024). When passive funds affect prices: evidence from volatility and commodity ETFs. Review of Finance, 28, 831–863, https://doi.org/10.1093/rof/rfad038
Tsaknaki, I-Y., Lillo, F., & Mazzarisi, P. (2024). Online learning of order flow and market impact with Bayesian change-point detection methods. Quantitative Finance, 25. https://doi.org/10.1080/14697688.2024.2337300
Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. Measuring Scholarly Impact, 285-320. https://doi.org/10.1007/s11192-009-0146-3
Vecco, M., Rodríguez, J. P., & Teerink, S. (2024). Climbing the ladder? The gender gap in art prices across artists’ cohorts in the Dutch art market. European Economic Review, 163. https://doi.org/10.1016/j.euroecorev.2023.104657
Vogl, M. (2023). Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framework. Chaos, Solitons and Fractal. https://doi.org/10.1016/j.chaos.2022.112884
Wahid, A., & Kowalewski, O. (2024). Monetary Policy Spillovers and Inter-Market Dynamics Perspective of Preferred Habitat Model. Economies, 12(5), 98. https://doi.org/10.3390/economies12050098
Wu, R., Hossain, M. A., & Zhang, H. (2024). Factors affecting the volatility of bitcoin prices. The Economics and Finance Letters, 11(2), 107–125. https://doi.org/10.18488/29.v11i2.3730
Yusuf, M‐B. O. Salau, T. J., & Adeiza, A. (2024). Oil and Food Price Before and During COVID-19 Pandemic in Nigeria: A Non-Linear ARDL Approach. Studia Universitatis, Vasile Goldis Arad – Economics Series, 34. https://doi.org/10.2478/sues-2024-0007
Zhu, J., Zhang, L., & Sun, X. (2024). Optimal liquidation using extended trading close for multiple trading days. Financial Innovation. https://doi.org/10.1186/s40854-024-00613-7
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Revista: apenas para a 1a. publicação

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Os autores, no ato da submissão, aceitam a declaração abaixo:
Nós autores mantemos sobre nosso artigo publicado os direitos autorais e concedemos à revista Contextus o direito de primeira publicação, com uma licença Creative Commons na modalidade Atribuição – Não Comercial 4.0 Internacional, a qual permite o compartilhamento com reconhecimento da autoria e da publicação inicial nesta revista.
Temos ciência de estarmos autorizados a assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), também com reconhecimento tanto da autoria, quanto da publicação inicial neste periódico.
Atestamos que o artigo é original ou inédito, não foi publicado, até esta data, em nenhum periódico brasileiro ou estrangeiro, quer em português, quer em versão em outra língua, nem está encaminhado para publicação simultânea em outras revistas.
Sabemos que o plágio não é tolerado pela revista Contextus e asseguramos que o artigo apresenta as fontes de trechos de obras citadas, incluindo os de qualquer trabalho prévio produzido e publicado pelos próprios autores.








1.jpg)



1.jpg)

1.jpg)



.jpg)



1.jpg)

1.jpg)


1.jpg)

1.jpg)
1.jpg)
2.png)




2.jpg)
1.jpg)




1.jpg)


1.jpg)
1.jpg)