Biofilm formation in cutaneous wounds and its behavior in the face of interventions: an integrative review

Keywords: Biofilms; Wounds and Injuries; Nursing; Enterostomal Therapy.


Objective: to identify in the literature the biofilm formation and its behavior when faced with interventions in cutaneous wounds. Methods: an integrative review, carried out in the Cumulative Index to Nursing and Allied Health Literature, Latin American and Caribbean Health Sciences Literature, EMBASE, Scopus, The Cochrane Library Collaboration, MEDLINE/PubMed and Science Direct databases, without temporal delimitation. Nineteen studies were selected. The information was evaluated descriptively, comparing it with the pertinent findings. Results: the sample studies were published in English and included three types of biofilm research: two clinical, six in vitro and 11 in vivo (animal). Three themes were included: biofilm model creation (n=4), biofilm assessment (n=3), biofilm behavior before interventions for its management (n=12). Conclusion: the detrimental effects of biofilm on wound healing have been confirmed. Several interventions were able to reduce and eliminate biofilm in in vitro and in vivo models. Contributions to practice: it was found that clinical evaluation of the lesion does not allow the identification of biofilm, even when present; it is below the surface of the lesion. This finding raises reflection on the part of nurses regarding the interventions adopted for the removal of biofilm.


Schultz G, Bjarnsholt T, James GA, Leaper DJ, McBain AJ, Malone M, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017;25(5):744-57. doi:

Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, et al. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience. 2021;24(5):102443. doi:

Percival SL, Mayer D, Malone M, Swanson T, Gibson D, Schultz G. Surfactants and their role in wound cleansing and biofilm management. J Wound Care. 2017;26(11):680-90. doi:

Trøstrup H, Laulund ASB, Moser C. Insights on host-pathogen interactions in biofilm-infected wounds reveal possibility for new treatment strategies. Antibióticos. 2020;9(7):396. doi:

Mori Y, Nakagami G, Kitamura A, Minematsu T, Kinoshita M, Suga H, et al. Effectiveness of biofilm-based wound care system on wound healing in chronic wounds. Wound Repair Regen. 2019;27(5):540-7. doi:

Stoffel JJ, Riedi PLK, Romdhane BH. A multimodel regime for evaluating effectiveness of antimicrobial wound care products in microbial biofilms. Wound Repair Regen. 2020;28(4):438-47. doi:

Mendes KDS, Silveira RCCP, Galvão CM. Use of the bibliographic reference manager in the selection of primary studies in integrative reviews. Texto Contexto Enferm. 2019;28:e20170204. doi:

Souza PBM, Ramos MS, Pontes FAR, Silva SSC. Coparenting: a study of systematic literature review. Estilos Clin. 2016;21(3):700-20. doi:

Neta ISS, Medeiros MS, Gonçalves MJF. Vigilância da saúde orientada às condições de vida da população: uma revisão integrativa da literatura. Saúde Debate. 2018;42(116):307-17. doi:

Han A, Zenilman JM, Melendez JH, Shirtliff ME, Agostinho A, James G. The importance of a multifaceted approach to characterizing the microbial flora of chronic wounds. Wound Repair Regen. 2011;19(5):532-41. doi:

Guedes GMM, Santos-Filho ASP, Regis WFM, Ocadaque CJ, Amando BR, Sidrim JJC, et al. Ex situ model of biofilm-associated wounds: providing a host-like environment for the study of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. J Appl Microbiol. 2021;131(3):1487-97. doi:

Pirlar RF, Emaneini M, Beigverdi R, Banar M, van Leeuwen WB, Jabalameli F. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. PLoS One. 2020;15(6):e0235093. doi:

Kwiecińska-Piróg J, Skowron K, Śniegowska A, Przekwas J, Balcerek M, Załuski D, et al. The impact of ethanol extract of propolis on biofilm forming by Proteus Mirabilis strains isolated from chronic wounds infections. Nat Prod Res. 2019;33(22):3293-97. doi:

Tahir S, Malone M, Hu H, Deva A, Vickery K. The effect of negative pressure wound therapy with and without instillation on mature biofilms in vitro. Materials (Basel). 2018;11(5):811. doi:

Ghaseminezhad SM, Shojaosadati SA, Meyer RL. Ag/Fe3O4 nanocomposites penetrate and eradicate S. aureus biofilm in an in vitro chronic wound model. Biointerfaces Colloids Surf B. 2018;163:192-200. doi:

Ngo QD, Vickery K, Deva AK. The effect of topical negative pressure on wound biofilms using an in vitro wound model. Wound Repair Regen. 2012;20(1):83-90. doi:

Kim JH, Ruegger PR, Lebig EG, VanSchalkwyk S, Jeske DR, Hsiao A, et al. High levels of oxidative stress create a microenvironment that significantly decreases the diversity of the microbiota in diabetic chronic wounds and promotes biofilm formation. Front Cell Infect Microbiol. 2020;10:259. doi:

Davis SC, Li J, Gil J, Head C, Valdes J, Glinos GD, et al. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Wound Repair Regen. 2019;27(4):360-65. doi:

Brandenburg KS, Weaver AJ Jr, Qian L, You T, Chen P, Karna SLR, et al. Development of Pseudomonas Aeruginosa biofilms in partial-thickness burn wounds using a Sprague-Dawley rat model. J Burn Care Res. 2019;40(1):44-57. doi:

Hasan N, Cao J, Lee J, Naeem M, Hlaing SP, Kim J, et al. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Mater Sci Eng C Mater Biol Appl. 2019;103:109741. doi:

Guoqi W, Zhirui L, Song W, Tongtong L, Lihai Z, Licheng Z, et al. Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model. Antonie Van Leeuwenhoek. 2018;111(9):1557-70. doi:

Karna SL, D’Arpa P, Chen T, Qian LW, Fourcaudot AB, Yamane K, et al. RNA-seq transcriptomic responses of full-thickness dermal excision wounds to Pseudomonas aeruginosa acute and biofilm infection. PLoS One. 2016;11(10):e0165312. doi:

Brandenburg KS, Calderon DF, Kierski PR, Brown AL, Shah NM, Abbott NL, et al. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings. Wound Repair Regen. 2015;23(6):842-54. doi:

Seth AK, Zhong A, Nguyen KT, Hong SJ, Leung KP, Galiano RD, et al. Impact of a novel, antimicrobial dressing on in vivo, Pseudomonas aeruginosa wound biofilm: quantitative comparative analysis using a rabbit ear model. Wound Repair Regen. 2014;22(6):712-9. doi:

Gurjala AN, Geringer MR, Seth AK, Hong SJ, Smeltzer MS, Galiano RD, et al. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing. Wound Repair Regen. 2011;19(3):400-10. doi:

Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, et al. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen. 2010;18(5):467-77. doi:

Kim PJ, Attinger CE, Constantine T, Crist BD, Fausto E, Hirche CR, et al. Negative pressure wound therapy with instillation: International consensus guidelines update. Int Wound J. 2020;17(1):174-86. doi:

Suleman L, Purcell L, Thomas H, Westgate S. Use of internally validated in vitro biofilm models to assess antibiofilm performance of silver-containing gelling fibre dressings. J Wound Care. 2020;29(3):154-61. doi:

How to Cite
Borges, E. L., Spira, J. A. O., Amorim, G. L., & Coelho, A. C. S. M. (2022). Biofilm formation in cutaneous wounds and its behavior in the face of interventions: an integrative review. Rev Rene, 23, e78112.
Review Article