Prevalence of drug-resistant tuberculosis and associated factors




Tuberculosis; Tuberculosis, Multidrug-Resistant; Nursing; Epidemiology; Public Health.


Objective: to estimate the prevalence of drug-resistant tuberculosis and associated factors. Methods: a retrospective study that evaluated 74,006 cases of tuberculosis registered in the Notifiable Diseases Information System. In the multivariate analysis, the outcome variable “drug resistance” was used to estimate the prevalence ratio of factors associated with drug resistance. Results: a rate of 0.5% of drug resistance was estimated (n=388). A higher prevalence was observed in cases classified as relapse, post-dropout re-entry, and transfer. There was a 53.0% increase when sputum smear microscopy was positive and a 6.5 increase for positive sputum culture. The opposite effect was observed when the diagnostic test for human immunodeficiency virus was not performed. Conclusion: a low prevalence of drug-resistant tuberculosis was estimated compared to international scenarios. The main factors associated with the disease were related to retreatments and positive sputum smear and culture results.


Barreira D. The challenges to eliminating tuberculosis in Brazil. Epidemiol Serv Saúde. 2018; 27(1):e00100009. doi:

Falzon D, Schünemann HJ, Harausz E, González-Angulo L, Lienhardt C, Jaramillo E, et al. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur Respir J. 2017; 49(3):1602308. doi:

World Health Organization. Global tuberculosis report 2020 [Internet]. 2021 [cited June 6, 2021]. Available from:

Manson AL, Cohen KA, Abeel T, Desjardins C, Armstrong D, Barry CE, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017; 49(3):395-402. doi:

Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med. 2017; 5(4):291-360. doi:

Ho J, Byrne AL, Linh NN, Jaramillo E, Fox GJ. Decentralized care for multidrug-resistant tuberculosis: a systematic review and meta-analysis. Bull World Health Organ. 2017; 95(8):584-93. doi:

Ministério da Saúde (BR). Tuberculose [Internet]. 2021 [cited July 4, 2021]. Available from:

Snyder RE, Marlow MA, Phuphanich ME, Riley LW, Maciel EL. Risk factors for differential outcome following directly observed treatment (DOT) of slum and non-slum tuberculosis patients: a retrospective cohort study. BMC Infect Dis. 2016; 16:494. doi:

Instituto Brasileiro de Geografia e Estatística. Brasil – Ceará. 2019 [Internet]. 2019 [cited Mar 27, 2021]. Available from:

Ministério da Saúde (BR). Manual de recomendações para o controle da tuberculose no Brasil [Internet]. 2019 [cited Mar 27, 2021]. Available from:

Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018; 73(5):1138-51. doi:

Ullah I, Javaid A, Tahir Z, Ullah O, Shah AA, Hasan F, et al. Pattern of drug resistance and risk factors associated with development of drug resistant mycobacterium tuberculosis in Pakistan. PLoS One. 2016; 11(1):e0147529. doi:

Sharma A, Hill A, Kurbatova E, Van der Walt M, Kvasnovsky C, Tupasi TE, et al. Estimating the future burden of multidrug-resistant and extensively drug-resistant tuberculosis in India, the Philippines, Russia, and South Africa: a mathematical modeling study. Lancet Infect Dis. 2017; 17(7):707-15. doi:

Fregona G, Cosme LB, Moreira CMM, Bussular JL, Dettoni VV, Dalcolmo MP, et al. Risk factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil. Rev Saúde Pública. 2017; 51:41. doi:

Müller AM, Osório CS, Silva DR, Sbruzzi G, Tarso P, Dalcin R. Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2018; 22(7):731-40. doi:

Ferreira KR, Orlandi GM, Silva TC, Bertolozzi MR, França FOS, Bender A. Representations on adherence to the treatment of multidrug-resistant tuberculosis. Rev Esc Enferm USP. 2018; 52:e03412. doi:

Schito M, Hanna D, Zumla A. Tuberculosis eradication versus control. Int J Infect Dis. 2017; 56:10-13. doi:

Zignol M, Dean AS, Falzon D, Van Gemert W, Wright A, Van Deun A, et al. Twenty years of global surveillance of antituberculosis-drug resistance. N Engl J Med. 2016; 375(11):1081-9. doi:

Villegas L, Otero L, Sterling TR, Huaman MA, Van der Stuyft P, Gotuzzo E, et al. Prevalence, risk factors, and treatment outcomes of isoniazid- and rifampicin-mono-resistant pulmonary tuberculosis in Lima, Peru. PLoS One. 2016; 11(4):e0152933. doi:

Schnippel K, Firnhaber C, Berhanu R, Page-Shipp L, Sinanovic E. Adverse drug reactions during drug-resistant TB treatment in high HIV prevalence settings: a systematic review and meta-analysis. J Antimicrob Chemother. 2017; 72(7):1871-9. doi:



How to Cite

Sousa, G. J. B., Maranhão, T. A., Leitão, T. do M. J. S., Moreira, T. M. M., Souza, J. T. de, & Pereira, M. L. D. (2021). Prevalence of drug-resistant tuberculosis and associated factors. Rev Rene, 22, e70733.



Research Article

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>